Suppr超能文献

比较一维和三维模型估算血流储备分数。

Comparison of 1D and 3D Models for the Estimation of Fractional Flow Reserve.

机构信息

National Laboratory for Scientific Computing, LNCC/MCTIC, Av. Getúlio Vargas, 333, Petrópolis-RJ, 25651-075, Brazil.

INCT-MACC Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Brazil.

出版信息

Sci Rep. 2018 Nov 22;8(1):17275. doi: 10.1038/s41598-018-35344-0.

Abstract

In this work we propose to validate the predictive capabilities of one-dimensional (1D) blood flow models with full three-dimensional (3D) models in the context of patient-specific coronary hemodynamics in hyperemic conditions. Such conditions mimic the state of coronary circulation during the acquisition of the Fractional Flow Reserve (FFR) index. Demonstrating that 1D models accurately reproduce FFR estimates obtained with 3D models has implications in the approach to computationally estimate FFR. To this end, a sample of 20 patients was employed from which 29 3D geometries of arterial trees were constructed, 9 obtained from coronary computed tomography angiography (CCTA) and 20 from intra-vascular ultrasound (IVUS). For each 3D arterial model, a 1D counterpart was generated. The same outflow and inlet pressure boundary conditions were applied to both (3D and 1D) models. In the 1D setting, pressure losses at stenoses and bifurcations were accounted for through specific lumped models. Comparisons between 1D models (FFR) and 3D models (FFR) were performed in terms of predicted FFR value. Compared to FFR, FFR resulted with a difference of 0.00 ± 0.03 and overall predictive capability AUC, Acc, Spe, Sen, PPV and NPV of 0.97, 0.98, 0.90, 0.99, 0.82, and 0.99, with an FFR threshold of 0.8. We conclude that inexpensive FFR simulations can be reliably used as a surrogate of demanding FFR computations.

摘要

在这项工作中,我们建议在充血状态下对患者特定的冠状动脉血液动力学进行三维(3D)全模型和一维(1D)血流模型的预测能力进行验证。这种情况模拟了在获取血流储备分数(FFR)指数期间冠状动脉循环的状态。证明 1D 模型能够准确再现 3D 模型获得的 FFR 估计值,这对计算估计 FFR 的方法具有重要意义。为此,从 20 名患者中抽取了一个样本,其中构建了 29 个动脉树的 3D 几何形状,9 个来自冠状动脉计算机断层扫描血管造影(CCTA),20 个来自血管内超声(IVUS)。为每个 3D 动脉模型生成一个 1D 对应模型。相同的流出和入口压力边界条件应用于 3D 和 1D 模型。在 1D 设置中,通过特定的集总模型来计算狭窄和分叉处的压力损失。通过预测 FFR 值比较 1D 模型(FFR)和 3D 模型(FFR)。与 FFR 相比,FFR 的差异为 0.00±0.03,总体预测能力 AUC、Acc、Spe、Sen、PPV 和 NPV 分别为 0.97、0.98、0.90、0.99、0.82 和 0.99,FFR 阈值为 0.8。我们得出结论,廉价的 FFR 模拟可以可靠地用作昂贵的 FFR 计算的替代物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb92/6250665/3a36bbf426aa/41598_2018_35344_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验