Institute of Cancer and Genomic Science, University of Birmingham, 6 Mindelsohn Way, Birmingham, B15 2SY, UK.
Molecular and Population Genetics Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
Virchows Arch. 2019 Apr;474(4):511-522. doi: 10.1007/s00428-018-2485-z. Epub 2018 Nov 23.
Clinical success of immunotherapy is driving the need for new prognostic and predictive assays to inform patient selection and stratification. This requirement can be met by a combination of computational pathology and artificial intelligence. Here, we critically assess computational approaches supporting the development of a standardized methodology in the assessment of immune-oncology biomarkers, such as PD-L1 and immune cell infiltrates. We examine immunoprofiling through spatial analysis of tumor-immune cell interactions and multiplexing technologies as a predictor of patient response to cancer treatment. Further, we discuss how integrated bioinformatics can enable the amalgamation of complex morphological phenotypes with the multiomics datasets that drive precision medicine. We provide an outline to machine learning (ML) and artificial intelligence tools and illustrate fields of application in immune-oncology, such as pattern-recognition in large and complex datasets and deep learning approaches for survival analysis. Synergies of surgical pathology and computational analyses are expected to improve patient stratification in immuno-oncology. We propose that future clinical demands will be best met by (1) dedicated research at the interface of pathology and bioinformatics, supported by professional societies, and (2) the integration of data sciences and digital image analysis in the professional education of pathologists.
免疫疗法的临床成功推动了对新的预后和预测检测的需求,以告知患者选择和分层。这一需求可以通过计算病理学和人工智能的结合来满足。在这里,我们批判性地评估了支持免疫肿瘤生物标志物(如 PD-L1 和免疫细胞浸润)评估标准化方法发展的计算方法。我们通过肿瘤-免疫细胞相互作用的空间分析和多重检测技术来检查免疫分析,作为预测患者对癌症治疗反应的指标。此外,我们还讨论了如何将复杂的形态表型与推动精准医学的多组学数据集相结合。我们提供了一个机器学习 (ML) 和人工智能工具的概述,并说明了它们在免疫肿瘤学中的应用领域,例如在大型和复杂数据集的模式识别以及用于生存分析的深度学习方法。手术病理学和计算分析的协同作用有望改善免疫肿瘤学中的患者分层。我们提出,未来的临床需求将通过以下方式得到最好的满足:(1)病理学和生物信息学之间的专门研究,得到专业协会的支持;(2)在病理学家的专业教育中整合数据科学和数字图像分析。