Suppr超能文献

激光切断的微管表现出再生的个体性,然而大多数微管的游离新末端是稳定的。

Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable.

作者信息

Tao W, Walter R J, Berns M W

机构信息

Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.

出版信息

J Cell Biol. 1988 Sep;107(3):1025-35. doi: 10.1083/jcb.107.3.1025.

Abstract

To study the possible mechanism of microtubule turnover in interphase cells, we have used the 266-nm wavelength of a short-pulsed Nd/YAG laser to transect microtubules in situ in PtK2 cells at predefined regions. The regrowth and shrinkage of the transected microtubules have been examined by staining the treated cells with antitubulin mAb at various time points after laser irradiation. The results demonstrate that microtubules grow back into the transected zones individually; neither simultaneous growth nor shrinkage of all microtubules has been observed. The half-time of replacement of laser-dissociated microtubules is observed to be approximately 10 min. On the other hand, exposure of the core of the microtubule, which is expected to consist almost completely of GDP-tubulin, by transecting the internal regions of the microtubule does not render the remaining polymer catastrophically disassembled, and most transected microtubules with free minus ends do not quickly disappear. Taken together, these results suggest that most microtubules in cultured interphase cells exhibit some properties of dynamic instability (individual regrowth or shrinkage); however, other factors in addition to the hydrolysis of GTP-tubulin need to be involved in modulating the dynamics and the stability of these cytoplasmic microtubules.

摘要

为了研究间期细胞中微管周转的可能机制,我们使用短脉冲Nd/YAG激光的266纳米波长,在预定义区域对PtK2细胞中的微管进行原位横切。在激光照射后的不同时间点,用抗微管蛋白单克隆抗体对处理过的细胞进行染色,检查横切微管的重新生长和收缩情况。结果表明,微管是单独生长回到横切区域的;未观察到所有微管同时生长或收缩的情况。观察到激光解离的微管替换的半衰期约为10分钟。另一方面,通过横切微管的内部区域来暴露微管核心(预计几乎完全由GDP - 微管蛋白组成),并不会使剩余的聚合物灾难性地解体,并且大多数带有游离负端的横切微管不会很快消失。综上所述,这些结果表明,培养的间期细胞中的大多数微管表现出一些动态不稳定性的特性(单独的重新生长或收缩);然而,除了GTP - 微管蛋白水解之外,还需要其他因素来调节这些细胞质微管的动态变化和稳定性。

相似文献

3
Interphase microtubule dynamics are cell type-specific.
J Cell Sci. 1990 Jan;95 ( Pt 1):23-32. doi: 10.1242/jcs.95.1.23.
4
Cytoplasmic assembly of microtubules in cultured cells.
J Cell Sci. 1997 Nov;110 ( Pt 21):2635-45. doi: 10.1242/jcs.110.21.2635.
5
Microtubule dynamics in vivo: a test of mechanisms of turnover.
J Cell Biol. 1987 Mar;104(3):395-405. doi: 10.1083/jcb.104.3.395.
6
Biophysical properties of stable microtubules in neurites revealed by optical techniques.
Cell Struct Funct. 1999 Oct;24(5):405-12. doi: 10.1247/csf.24.405.
8
Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
Cell Motil Cytoskeleton. 1993;26(1):19-39. doi: 10.1002/cm.970260104.
9
Morphogenesis and the control of microtubule dynamics in cells.
J Cell Sci Suppl. 1986;5:293-310. doi: 10.1242/jcs.1986.supplement_5.19.

引用本文的文献

1
Effects of dynein on microtubule mechanics and centrosome positioning.
Mol Biol Cell. 2011 Dec;22(24):4834-41. doi: 10.1091/mbc.E11-07-0611. Epub 2011 Oct 19.
2
Functional molecular morphology of anterior pituitary cells, from hormone production to intracellular transport and secretion.
Med Mol Morphol. 2011 Jun;44(2):63-70. doi: 10.1007/s00795-011-0545-4. Epub 2011 Jun 30.
3
Molecular morphology of pituitary cells, from conventional immunohistochemistry to fluorescein imaging.
Molecules. 2011 Apr 29;16(5):3618-35. doi: 10.3390/molecules16053618.
4
Spatially sculpted laser scissors for study of DNA damage and repair.
J Biomed Opt. 2009 Sep-Oct;14(5):054004. doi: 10.1117/1.3213601.
9
Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii.
J Cell Biol. 1989 May;108(5):1751-60. doi: 10.1083/jcb.108.5.1751.
10
UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production.
J Cell Biol. 1990 Oct;111(4):1505-18. doi: 10.1083/jcb.111.4.1505.

本文引用的文献

2
Head-to-tail polymerization of microtubules in vitro.
J Mol Biol. 1981 Aug 25;150(4):577-99. doi: 10.1016/0022-2836(81)90382-x.
3
Structural polarity of kinetochore microtubules in PtK1 cells.
J Cell Biol. 1981 May;89(2):338-45. doi: 10.1083/jcb.89.2.338.
4
Microtubule treadmills--possible molecular machinery.
Nature. 1981 Oct 29;293(5835):705-11. doi: 10.1038/293705a0.
5
Laser microsurgery in cell and developmental biology.
Science. 1981 Jul 31;213(4507):505-13. doi: 10.1126/science.7017933.
6
Computer-enhanced video microscopy: digitally processed microscope images can be produced in real time.
Proc Natl Acad Sci U S A. 1981 Nov;78(11):6927-31. doi: 10.1073/pnas.78.11.6927.
8
Phase changes at the end of a microtubule with a GTP cap.
Proc Natl Acad Sci U S A. 1984 Sep;81(18):5772-6. doi: 10.1073/pnas.81.18.5772.
9
Steady-state theory of the interference of GTP hydrolysis in the mechanism of microtubule assembly.
Proc Natl Acad Sci U S A. 1983 Dec;80(23):7234-8. doi: 10.1073/pnas.80.23.7234.
10
Dynamic instability of microtubule growth.
Nature. 1984;312(5991):237-42. doi: 10.1038/312237a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验