Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA.
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
Angew Chem Int Ed Engl. 2019 Jan 14;58(3):877-881. doi: 10.1002/anie.201811046. Epub 2018 Dec 12.
Mechanical anisotropy is an essential property for biomolecules to assume structural and functional roles in mechanobiology. However, there is insufficient information on the mechanical anisotropy of ligand-biomolecule complexes. Herein, we investigated the mechanical property of individual human telomeric G-quadruplexes bound to telomestatin, using optical tweezers. Stacking of the ligand to the G-tetrad planes changes the conformation of the G-quadruplex, which resembles a balloon squeezed in certain directions. Such a squeezed balloon effect strengthens the G-tetrad planes, but dislocates and weakens the loops in the G-quadruplex upon ligand binding. These dynamic interactions indicate that the binding between the ligand and G-quadruplex follows the induced-fit model. We anticipate that the altered mechanical anisotropy of the ligand-G-quadruplex complex can add additional level of regulations on the motor enzymes that process DNA or RNA molecules.
机械各向异性是生物分子在力学生物学中承担结构和功能作用的一个基本特性。然而,关于配体-生物分子复合物的机械各向异性的信息还不够充分。在此,我们使用光学镊子研究了与端粒素结合的单个人类端粒 G-四链体的机械性能。配体堆积在 G-四联体平面上会改变 G-四联体的构象,使其类似于在某些方向上被挤压的气球。这种被挤压的气球效应会增强 G-四联体平面,但在配体结合时会使 G-四联体的环错位和弱化。这些动态相互作用表明,配体与 G-四联体之间的结合遵循诱导契合模型。我们预计,配体-G-四联体复合物的机械各向异性的改变可以为处理 DNA 或 RNA 分子的运动酶增加额外的调控水平。