Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States.
ACS Nano. 2020 Oct 27;14(10):13180-13191. doi: 10.1021/acsnano.0c04863. Epub 2020 Sep 16.
Rubber is a fascinating material in both industry and daily life. The development of elastomeric material in nanotechnology is imperative due to its economic and technological potential. By virtue of their distinctive physicochemical properties, nucleic acids have been extensively explored in material science. The Phi29 DNA packaging motor contains a 3WJ with three angles of 97°, 125°, and 138°. Here, the rubber-like property of RNA architectures was investigated using optical tweezers and imaging technologies. The 3WJ 97° interior angle was contracted or stretched to 60°, 90°, and 108° at will to build elegant RNA triangles, squares, pentagons, cubes, tetrahedrons, dendrimers, and prisms. RNA nanoarchitecture was stretchable and shrinkable by optical tweezer with multiple extension and relaxation repeats like a rubber. Comparing to gold and iron nanoparticles with the same size, RNA nanoparticles display stronger cancer-targeting outcomes, while less accumulation in healthy organs. Generally, the upper limit of renal excretion is 5.5 nm; however, the 5, 10, and 20 nm RNA nanoparticles passed the renal filtration and resumed their original structure identified in urine. These findings solve two previous mysteries: (1) Why RNA nanoparticles have an unusually high tumor targeting efficiency since their rubber or amoeba-like deformation property enables them to squeeze out of the leaky vasculature to improve the EPR effect; and (2) why RNA nanoparticles remain non-toxic since they can be rapidly cleared from the body renal excretion into urine with little accumulation in the body. Considering its controllable shape and size plus its rubber-like property, RNA holds great promises for industrial and biomedical applications especially in cancer therapeutics delivery.
橡胶在工业和日常生活中都是一种引人入胜的材料。由于其经济和技术潜力,弹性体材料在纳米技术中的发展势在必行。核酸凭借其独特的物理化学性质,在材料科学领域得到了广泛的探索。Phi29 DNA 包装马达包含一个 3WJ,三个角度分别为 97°、125°和 138°。在这里,我们使用光学镊子和成像技术研究了 RNA 结构的橡胶状性质。3WJ 的 97°内角可以随意收缩或拉伸至 60°、90°和 108°,从而构建优雅的 RNA 三角形、正方形、五边形、立方体、四面体、树枝状聚合物和棱镜。RNA 纳米结构可以像橡胶一样通过光学镊子进行多次拉伸和松弛重复,实现伸缩。与具有相同尺寸的金和铁纳米颗粒相比,RNA 纳米颗粒表现出更强的癌症靶向效果,而在健康器官中的积累较少。一般来说,肾脏排泄的上限为 5.5nm;然而,5、10 和 20nm 的 RNA 纳米颗粒通过了肾过滤,并在尿液中恢复了它们的原始结构。这些发现解决了两个先前的谜团:(1)为什么 RNA 纳米颗粒具有异常高的肿瘤靶向效率,因为它们的橡胶或变形虫样变形特性使它们能够挤出渗漏的脉管系统,从而改善 EPR 效应;以及(2)为什么 RNA 纳米颗粒保持非毒性,因为它们可以通过肾脏排泄迅速从体内清除,很少在体内积累。考虑到其可控的形状和尺寸以及橡胶状特性,RNA 在工业和生物医学应用,特别是癌症治疗药物输送方面具有广阔的应用前景。