Storm Philip A, Herbst Dominik A, Maier Timm, Townsend Craig A
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
Cell Chem Biol. 2017 Mar 16;24(3):316-325. doi: 10.1016/j.chembiol.2017.01.008. Epub 2017 Feb 23.
Fungal polyketide synthases (PKSs) are large, multidomain enzymes that biosynthesize a wide range of natural products. A hallmark of these megasynthases is the iterative use of catalytic domains to extend and modify a series of enzyme-bound intermediates. A subset of these iterative PKSs (iPKSs) contains a C-methyltransferase (CMeT) domain that adds one or more S-adenosylmethionine (SAM)-derived methyl groups to the carbon framework. Neither the basis by which only specific positions on the growing intermediate are methylated ("programming") nor the mechanism of methylation are well understood. Domain dissection and reconstitution of PksCT, the fungal non-reducing PKS (NR-PKS) responsible for the first isolable intermediate in citrinin biosynthesis, demonstrates the role of CMeT-catalyzed methylation in precursor elongation and pentaketide formation. The crystal structure of the S-adenosyl-homocysteine (SAH) coproduct-bound PksCT CMeT domain reveals a two-subdomain organization with a novel N-terminal subdomain characteristic of PKS CMeT domains and provides insights into co-factor and ligand recognition.
真菌聚酮合酶(PKSs)是一类大型的多结构域酶,可生物合成多种天然产物。这些巨型合酶的一个标志是催化结构域的重复使用,以扩展和修饰一系列与酶结合的中间体。这些迭代型聚酮合酶(iPKSs)的一个亚类包含一个C-甲基转移酶(CMeT)结构域,该结构域会将一个或多个来源于S-腺苷甲硫氨酸(SAM)的甲基添加到碳骨架上。目前对于在生长中的中间体上只有特定位置被甲基化(“编程”)的依据以及甲基化的机制都还了解甚少。对PksCT进行结构域剖析和重组,PksCT是负责桔霉素生物合成中首个可分离中间体的真菌非还原型聚酮合酶(NR-PKS),这证明了CMeT催化的甲基化在前体延伸和五酮化合物形成中的作用。与S-腺苷高半胱氨酸(SAH)副产物结合的PksCT CMeT结构域的晶体结构揭示了一种双结构域组织,具有PKS CMeT结构域特有的新型N端结构域,并为辅助因子和配体识别提供了见解。