Suppr超能文献

用于监测飞行蚊子、性别鉴定及物种鉴定讨论的光学遥感

Optical remote sensing for monitoring flying mosquitoes, gender identification and discussion on species identification.

作者信息

Genoud Adrien P, Basistyy Roman, Williams Gregory M, Thomas Benjamin P

机构信息

Department of Physics, New Jersey Institute of Technology, 323 Martin Luther King Jr Blvd, Newark, NJ, USA.

Center for Vector Biology, Rutgers University, 180 Jones Ave., New Brunswick, NJ, USA.

出版信息

Appl Phys B. 2018 Mar;124(3). doi: 10.1007/s00340-018-6917-x. Epub 2018 Feb 17.

Abstract

Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled environment to mimic long-range lidars, mosquitoes are free flying at a distance of ~ 4 m from the collecting optics. The wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.

摘要

蚊媒疾病是人类健康面临的一项重大挑战,因为它们每年影响近7亿人,并导致超过100万人死亡。有关关键昆虫物种的种群演变和空间分布的可靠信息对于生态流行病学模型的开发至关重要。本文报道了使用连续波红外光学遥感系统对飞行中的蚊子进行远程表征。该系统设置在一个受控环境中以模拟远程激光雷达,蚊子在距离收集光学器件约4米处自由飞行。通过穿过激光束的蚊子的后向散射光来获取翅膀拍动频率。总共从三种蚊子的雄性和雌性记录了427个过境信号。由于蚊子的种类和性别是先验已知的,我们研究将翅膀拍动频率用作两种贝叶斯分类的唯一预测变量:仅性别(两类)和种类/性别(六类)。每种蚊子性别的识别准确率为96.5%,而蚊子种类/性别的识别准确率为62.3%。已知这是识别昆虫科的一种有效方法,我们讨论了仅使用翅膀拍动频率来识别昆虫种类的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b62/6269144/b0e850699adb/nihms-997170-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验