Suppr超能文献

最小化电极对湿离子液体中水的电吸附。

Minimizing the electrosorption of water from humid ionic liquids on electrodes.

机构信息

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China.

State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.

出版信息

Nat Commun. 2018 Dec 4;9(1):5222. doi: 10.1038/s41467-018-07674-0.

Abstract

In supercapacitors based on ionic liquid electrolytes, small amounts of absorbed water could potentially reduce the electrochemical window of electrolytes and cause performance degradation. The same would take place if ionic liquids are used as solvents for electrocatalysis involving the dissolved molecular species. In this work, we carry out molecular dynamics simulations, with gold and carbon electrodes in typical ionic liquids, hydrophobic and hydrophilic, to study electrosorption of water. We investigate the effects of hydrophobicity/hydrophilicity of ionic liquids and electrodes on interfacial distribution of ions and electrosorbed water. Results reveal that using hydrophilic ionic liquids would help to keep water molecules away from the negatively charged electrodes, even at large electrode polarizations. This conclusion is supported by electrochemical cyclic voltammetry measurements on gold and carbon electrodes in contact with humid ionic liquids. Thereby, our findings suggest potential mechanisms for protection of electrodes from water electrosorption.

摘要

在基于离子液体电解质的超级电容器中,少量吸收的水可能会降低电解质的电化学窗口并导致性能下降。如果离子液体被用作涉及溶解分子物种的电催化的溶剂,也会发生同样的情况。在这项工作中,我们进行了分子动力学模拟,使用典型的离子液体中的金和碳电极,疏水性和亲水性,来研究水的电吸附。我们研究了离子液体和电极的疏水性/亲水性对离子和电吸附水的界面分布的影响。结果表明,使用亲水性离子液体有助于将水分子远离带负电荷的电极,即使在电极极化较大的情况下也是如此。这一结论得到了在与湿离子液体接触的金和碳电极上进行电化学循环伏安测量的支持。因此,我们的发现为保护电极免受水电吸附提供了潜在的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dade/6279789/5f33af0d2c5f/41467_2018_7674_Fig1_HTML.jpg

相似文献

1
Minimizing the electrosorption of water from humid ionic liquids on electrodes.
Nat Commun. 2018 Dec 4;9(1):5222. doi: 10.1038/s41467-018-07674-0.
2
Adding salt to expand voltage window of humid ionic liquids.
Nat Commun. 2020 Nov 16;11(1):5809. doi: 10.1038/s41467-020-19469-3.
3
Water in ionic liquids at electrified interfaces: the anatomy of electrosorption.
ACS Nano. 2014 Nov 25;8(11):11685-94. doi: 10.1021/nn505017c. Epub 2014 Oct 29.
4
Hydrophilicity Dependent Distribution of Water at Ionic Liquids/Metal Interface Monitored by Electrochemical SERS.
ACS Appl Mater Interfaces. 2024 Sep 25;16(38):50054-50060. doi: 10.1021/acsami.4c11613. Epub 2024 Sep 16.
5
Ionic Liquids for Supercapacitor Applications.
Top Curr Chem (Cham). 2017 Jun;375(3):63. doi: 10.1007/s41061-017-0150-7. Epub 2017 May 30.
7
Computer simulations of ionic liquids at electrochemical interfaces.
Phys Chem Chem Phys. 2013 Oct 14;15(38):15781-92. doi: 10.1039/c3cp52088a. Epub 2013 Aug 28.
8
Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.
Chemosphere. 2016 Mar;146:113-20. doi: 10.1016/j.chemosphere.2015.12.012. Epub 2015 Dec 20.
9
Single Molecule Nanoelectrochemistry in Electrical Junctions.
Acc Chem Res. 2016 Nov 15;49(11):2640-2648. doi: 10.1021/acs.accounts.6b00373. Epub 2016 Oct 7.

引用本文的文献

1
Modeling of Nanomaterials for Supercapacitors: Beyond Carbon Electrodes.
ACS Nano. 2024 Jul 25;18(31):19931-49. doi: 10.1021/acsnano.4c01787.
4
Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene.
J Phys Chem C Nanomater Interfaces. 2024 Feb 21;128(9):3674-3684. doi: 10.1021/acs.jpcc.3c08269. eCollection 2024 Mar 7.
5
Revealing Interfacial Reactions on Pt Electrodes in Ionic Liquids by In Situ Fourier-Transform Infrared Spectroscopy.
Anal Chem. 2023 Nov 14;95(45):16618-16624. doi: 10.1021/acs.analchem.3c02903. Epub 2023 Oct 30.
6
Water in the Electrical Double Layer of Ionic Liquids on Graphene.
ACS Nano. 2023 May 23;17(10):9347-9360. doi: 10.1021/acsnano.3c01043. Epub 2023 May 10.
9
Understanding the Photoexcitation of Room Temperature Ionic Liquids.
ChemistryOpen. 2021 Feb;10(2):72-82. doi: 10.1002/open.202000278. Epub 2020 Dec 3.
10
Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces.
Acc Chem Res. 2021 Feb 16;54(4):1034-1042. doi: 10.1021/acs.accounts.0c00795. Epub 2021 Feb 2.

本文引用的文献

1
"Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research.
Chem Soc Rev. 2018 Feb 21;47(4):1250-1284. doi: 10.1039/c7cs00547d. Epub 2018 Feb 7.
3
Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures.
J Phys Condens Matter. 2016 Nov 23;28(46):464001. doi: 10.1088/0953-8984/28/46/464001. Epub 2016 Sep 14.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
6
"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.
Science. 2015 Nov 20;350(6263):938-43. doi: 10.1126/science.aab1595.
7
Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.
J Am Chem Soc. 2015 Oct 7;137(39):12627-32. doi: 10.1021/jacs.5b07416. Epub 2015 Sep 25.
8
On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
J Phys Chem Lett. 2013 Jan 3;4(1):132-40. doi: 10.1021/jz301782f. Epub 2012 Dec 19.
9
Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids.
J Phys Chem Lett. 2013 Feb 7;4(3):378-82. doi: 10.1021/jz301965d. Epub 2013 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验