Suppr超能文献

添加盐以扩展湿离子液体的电压窗口。

Adding salt to expand voltage window of humid ionic liquids.

作者信息

Chen Ming, Wu Jiedu, Ye Ting, Ye Jinyu, Zhao Chang, Bi Sheng, Yan Jiawei, Mao Bingwei, Feng Guang

机构信息

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China.

State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.

出版信息

Nat Commun. 2020 Nov 16;11(1):5809. doi: 10.1038/s41467-020-19469-3.

Abstract

Humid hydrophobic ionic liquids-widely used as electrolytes-have narrowed electrochemical windows due to the involvement of water, absorbed on the electrode surface, in electrolysis. In this work, we performed molecular dynamics simulations to explore effects of adding Li salt in humid ionic liquids on the water adsorbed on the electrode surface. Results reveal that most of the water molecules are pushed away from both cathode and anode, by adding salt. The water remaining on the electrode is almost bound with Li, having significantly lowered activity. The Li-bonding and re-arrangement of the surface-adsorbed water both facilitate the inhibition of water electrolysis, and thus prevent the reduction of electrochemical windows of humid hydrophobic ionic liquids. This finding is testified by cyclic voltammetry measurements where salt-in-humid ionic liquids exhibit enlarged electrochemical windows. Our work provides the underlying mechanism and a simple but practical approach for protection of humid ionic liquids from electrochemical performance degradation.

摘要

作为电解质被广泛使用的疏水离子液体,由于电极表面吸附的水参与电解反应,导致其电化学窗口变窄。在这项工作中,我们进行了分子动力学模拟,以探究在潮湿离子液体中添加锂盐对电极表面吸附水的影响。结果表明,添加盐后,大多数水分子被从阴极和阳极推开。残留在电极上的水几乎都与锂结合,活性显著降低。表面吸附水与锂的结合以及重新排列,都有助于抑制水电解,从而防止潮湿疏水离子液体的电化学窗口减小。循环伏安法测量证实了这一发现,即潮湿离子液体中的盐表现出扩大的电化学窗口。我们的工作为保护潮湿离子液体的电化学性能不退化提供了潜在机制和一种简单而实用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d10/7670447/41182cd51e34/41467_2020_19469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验