Szwargulski Patryk, Gdaniec Nadine, Graeser Matthias, Möddel Martin, Griese Florian, Krishnan Kannan M, Buzug Thorsten M, Knopp Tobias
University Medical Center Hamburg-Eppendorf, Section for Biomedical Imaging, Hamburg, Germany.
Hamburg University of Technology, Institute for Biomedical Imaging, Hamburg, Germany.
J Med Imaging (Bellingham). 2018 Oct;5(4):046002. doi: 10.1117/1.JMI.5.4.046002. Epub 2018 Nov 27.
Magnetic particle imaging (MPI) is a highly sensitive imaging method that enables the visualization of magnetic tracer materials with a temporal resolution of more than 46 volumes per second. In MPI, the size of the field of view (FoV) scales with the strengths of the applied magnetic fields. In clinical applications, those strengths are limited by peripheral nerve stimulation, specific absorption rates, and the requirement to acquire images of high spatial resolution. Therefore, the size of the FoV is usually a few cubic centimeters. To bypass this limitation, additional focus fields and/or external object movements can be applied. The latter approach is investigated. An object is moved through the scanner bore one step at a time, whereas the MPI scanner continuously acquires data from its static FoV. Using a 3-D phantom and dynamic 3-D data, it is shown that the data from such a moving table experiment can be jointly reconstructed after reordering the data with respect to the stepwise object shifts and heart beat phases.
磁粒子成像(MPI)是一种高灵敏度成像方法,能够以每秒超过46帧的时间分辨率实现磁性示踪材料的可视化。在MPI中,视野(FoV)的大小与所施加磁场的强度成比例。在临床应用中,这些强度受到周围神经刺激、比吸收率以及获取高空间分辨率图像的要求的限制。因此,FoV的大小通常为几立方厘米。为了绕过这一限制,可以应用额外的聚焦场和/或外部物体运动。本文研究了后一种方法。一个物体一次一步地穿过扫描仪孔,而MPI扫描仪则从其静态FoV连续获取数据。使用三维体模和动态三维数据表明,在根据物体的逐步移动和心跳相位对数据进行重新排序后,可以对这种移动台实验的数据进行联合重建。