Ito Kengo, Obuchi Yuka, Chikayama Eisuke, Date Yasuhiro, Kikuchi Jun
RIKEN Center for Sustainable Resource Science , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama , Kanagawa 230-0045 , Japan . Email:
Graduate School of Medical Life Science , Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku , Yokohama , Kanagawa 230-0045 , Japan.
Chem Sci. 2018 Sep 10;9(43):8213-8220. doi: 10.1039/c8sc03628d. eCollection 2018 Nov 21.
Various chemical shift predictive methodologies have been studied and developed, but there remains the problem of prediction accuracy. Assigning the NMR signals of metabolic mixtures requires high predictive performance owing to the complexity of the signals. Here we propose a new predictive tool that combines quantum chemistry and machine learning. A scaling factor as the objective variable to correct the errors of 2355 theoretical chemical shifts was optimized by exploring 91 machine learning algorithms and using the partial structure of 150 compounds as explanatory variables. The optimal predictive model gave RMSDs between experimental and predicted chemical shifts of 0.2177 ppm for H and 3.3261 ppm for C in the test data; thus, better accuracy was achieved compared with existing empirical and quantum chemical methods. The utility of the predictive model was demonstrated by applying it to assignments of experimental NMR signals of a complex metabolic mixture.
人们已经研究并开发了各种化学位移预测方法,但预测准确性的问题仍然存在。由于代谢混合物信号的复杂性,对其核磁共振信号进行归属需要很高的预测性能。在此,我们提出一种结合量子化学和机器学习的新预测工具。通过探索91种机器学习算法,并使用150种化合物的部分结构作为解释变量,优化了作为目标变量的比例因子,以校正2355个理论化学位移的误差。最优预测模型在测试数据中给出的实验化学位移与预测化学位移之间的均方根偏差,氢为0.2177 ppm,碳为3.3261 ppm;因此,与现有的经验方法和量子化学方法相比,该模型具有更高的准确性。通过将该预测模型应用于复杂代谢混合物的实验核磁共振信号归属,证明了其效用。