Suppr超能文献

达芦那韦类似物针对HIV-1蛋白酶原发性突变的结构适应性

Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease.

作者信息

Lockbaum Gordon J, Leidner Florian, Rusere Linah N, Henes Mina, Kosovrasti Klajdi, Nachum Gily S, Nalivaika Ellen A, Ali Akbar, Yilmaz Nese Kurt, Schiffer Celia A

机构信息

Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States.

出版信息

ACS Infect Dis. 2019 Feb 8;5(2):316-325. doi: 10.1021/acsinfecdis.8b00336. Epub 2018 Dec 31.

Abstract

HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82, and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogues to primary S1' mutations. The analogues had modifications at the hydrophobic P1' moiety compared to DRV to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analogue with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor interactions in the crystal structures using principle component analysis was able to distinguish inhibitor identity and relative potency solely based on van der Waals contacts. Our results reveal the complexity of the interplay between inhibitor P1' moiety and S1' mutations and validate principle component analyses as a useful tool for distinguishing resistance and inhibitor potency.

摘要

HIV-1蛋白酶是抗逆转录病毒疗法中用于对抗HIV的药物的主要靶点之一。然而,在蛋白酶抑制剂的选择性压力下,活性位点的主要突变会削弱抑制剂的结合以产生耐药性。达芦那韦(DRV)是临床上最有效的HIV-1蛋白酶抑制剂;由于DRV能很好地契合底物包膜,耐药性有限。尽管如此,由于活性位点内S1/S1'口袋内衬的包括I50、V82和I84在内的残基发生疏水变化,仍观察到了耐药性。通过酶抑制试验和一系列12个晶体结构,我们研究了DRV和两种强效类似物对主要S1'突变的敏感性。与DRV相比,这些类似物在疏水P1'部分进行了修饰,以更好地占据主要突变所在的S1'口袋中未被利用的空间。对于所有三种抑制剂,观察到对具有I84V和I50V突变的蛋白酶变体的效力有相当大的损失。晶体结构揭示了与具有最大P1'部分的类似物结合的I50V蛋白酶的瓣区出现了意想不到的构象变化,表明S1'亚位点与瓣区之间存在相互依赖性。使用主成分分析对晶体结构中的蛋白酶-抑制剂相互作用进行的综合分析能够仅基于范德华接触来区分抑制剂的身份和相对效力。我们的结果揭示了抑制剂P1'部分与S1'突变之间相互作用的复杂性,并验证了主成分分析作为区分耐药性和抑制剂效力的有用工具。

相似文献

1
Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease.
ACS Infect Dis. 2019 Feb 8;5(2):316-325. doi: 10.1021/acsinfecdis.8b00336. Epub 2018 Dec 31.
2
Interdependence of Inhibitor Recognition in HIV-1 Protease.
J Chem Theory Comput. 2017 May 9;13(5):2300-2309. doi: 10.1021/acs.jctc.6b01262. Epub 2017 Apr 11.
5
Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
J Mol Biol. 2008 Aug 1;381(1):102-15. doi: 10.1016/j.jmb.2008.05.062. Epub 2008 Jul 1.
10
Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
FEBS J. 2010 Sep;277(18):3699-714. doi: 10.1111/j.1742-4658.2010.07771.x. Epub 2010 Aug 2.

引用本文的文献

1
30 years of HIV therapy: Current and future antiviral drug targets.
Virology. 2025 Feb;603:110362. doi: 10.1016/j.virol.2024.110362. Epub 2024 Dec 17.
2
Design, Synthesis, and Biological Evaluation of Darunavir Analogs as HIV-1 Protease Inhibitors.
ACS Bio Med Chem Au. 2024 Sep 19;4(5):242-256. doi: 10.1021/acsbiomedchemau.4c00040. eCollection 2024 Oct 16.
4
FMO-guided design of darunavir analogs as HIV-1 protease inhibitors.
Sci Rep. 2024 Feb 13;14(1):3639. doi: 10.1038/s41598-024-53940-1.
5
Evolution of drug resistance drives destabilization of flap region dynamics in HIV-1 protease.
Biophys Rep (N Y). 2023 Aug 10;3(3):100121. doi: 10.1016/j.bpr.2023.100121. eCollection 2023 Sep 13.
7
AI-Aided Search for New HIV-1 Protease Ligands.
Biomolecules. 2023 May 18;13(5):858. doi: 10.3390/biom13050858.
9
Viral proteases: Structure, mechanism and inhibition.
Enzymes. 2021;50:301-333. doi: 10.1016/bs.enz.2021.09.004. Epub 2021 Nov 17.

本文引用的文献

1
Exploring the conformational landscapes of HIV protease structural ensembles using principal component analysis.
Proteins. 2018 Sep;86(9):990-1000. doi: 10.1002/prot.25534. Epub 2018 Sep 17.
3
Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease.
J Chem Theory Comput. 2018 May 8;14(5):2784-2796. doi: 10.1021/acs.jctc.8b00097. Epub 2018 Apr 18.
5
Design, Synthesis, Biological Evaluation, and X-ray Studies of HIV-1 Protease Inhibitors with Modified P2' Ligands of Darunavir.
ChemMedChem. 2017 Dec 7;12(23):1942-1952. doi: 10.1002/cmdc.201700614. Epub 2017 Nov 24.
6
Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.
J Chem Theory Comput. 2017 Nov 14;13(11):5671-5682. doi: 10.1021/acs.jctc.7b00601. Epub 2017 Oct 9.
7
Conformations of the HIV-1 protease: A crystal structure data set analysis.
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt A):1416-1422. doi: 10.1016/j.bbapap.2017.08.009. Epub 2017 Aug 26.
8
Interdependence of Inhibitor Recognition in HIV-1 Protease.
J Chem Theory Comput. 2017 May 9;13(5):2300-2309. doi: 10.1021/acs.jctc.6b01262. Epub 2017 Apr 11.
10
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验