Lockbaum Gordon J, Leidner Florian, Rusere Linah N, Henes Mina, Kosovrasti Klajdi, Nachum Gily S, Nalivaika Ellen A, Ali Akbar, Yilmaz Nese Kurt, Schiffer Celia A
Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States.
ACS Infect Dis. 2019 Feb 8;5(2):316-325. doi: 10.1021/acsinfecdis.8b00336. Epub 2018 Dec 31.
HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82, and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogues to primary S1' mutations. The analogues had modifications at the hydrophobic P1' moiety compared to DRV to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analogue with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor interactions in the crystal structures using principle component analysis was able to distinguish inhibitor identity and relative potency solely based on van der Waals contacts. Our results reveal the complexity of the interplay between inhibitor P1' moiety and S1' mutations and validate principle component analyses as a useful tool for distinguishing resistance and inhibitor potency.
HIV-1蛋白酶是抗逆转录病毒疗法中用于对抗HIV的药物的主要靶点之一。然而,在蛋白酶抑制剂的选择性压力下,活性位点的主要突变会削弱抑制剂的结合以产生耐药性。达芦那韦(DRV)是临床上最有效的HIV-1蛋白酶抑制剂;由于DRV能很好地契合底物包膜,耐药性有限。尽管如此,由于活性位点内S1/S1'口袋内衬的包括I50、V82和I84在内的残基发生疏水变化,仍观察到了耐药性。通过酶抑制试验和一系列12个晶体结构,我们研究了DRV和两种强效类似物对主要S1'突变的敏感性。与DRV相比,这些类似物在疏水P1'部分进行了修饰,以更好地占据主要突变所在的S1'口袋中未被利用的空间。对于所有三种抑制剂,观察到对具有I84V和I50V突变的蛋白酶变体的效力有相当大的损失。晶体结构揭示了与具有最大P1'部分的类似物结合的I50V蛋白酶的瓣区出现了意想不到的构象变化,表明S1'亚位点与瓣区之间存在相互依赖性。使用主成分分析对晶体结构中的蛋白酶-抑制剂相互作用进行的综合分析能够仅基于范德华接触来区分抑制剂的身份和相对效力。我们的结果揭示了抑制剂P1'部分与S1'突变之间相互作用的复杂性,并验证了主成分分析作为区分耐药性和抑制剂效力的有用工具。