Suppr超能文献

基于信息论的智能手机人体活动识别轻量级方法。

A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.

机构信息

Instituto de Computação, Universidade Federal do Amazonas, Manaus CEP 69067-005, Brazil.

出版信息

Sensors (Basel). 2020 Mar 27;20(7):1856. doi: 10.3390/s20071856.

Abstract

Smartphones have emerged as a revolutionary technology for monitoring everyday life, and they have played an important role in Human Activity Recognition (HAR) due to its ubiquity. The sensors embedded in these devices allows recognizing human behaviors using machine learning techniques. However, not all solutions are feasible for implementation in smartphones, mainly because of its high computational cost. In this context, the proposed method, called HAR-SR, introduces information theory quantifiers as new features extracted from sensors data to create simple activity classification models, increasing in this way the efficiency in terms of computational cost. Three public databases (SHOAIB, UCI, WISDM) are used in the evaluation process. The results have shown that HAR-SR can classify activities with 93% accuracy when using a leave-one-subject-out cross-validation procedure (LOSO).

摘要

智能手机已经成为监测日常生活的一项革命性技术,由于其普及性,它在人体活动识别(HAR)中发挥了重要作用。这些设备中嵌入的传感器可以使用机器学习技术来识别人类行为。然而,并非所有解决方案都适用于智能手机的实现,主要是因为其计算成本高。在这种情况下,所提出的方法称为 HAR-SR,它引入了信息论量化器作为从传感器数据中提取的新特征,以创建简单的活动分类模型,从而提高了计算成本方面的效率。在评估过程中使用了三个公共数据库(SHOAIB、UCI、WISDM)。结果表明,HAR-SR 可以在使用受试者留一交叉验证(LOSO)的情况下以 93%的准确率对活动进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9879/7181294/a0b2c3784c17/sensors-20-01856-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验