文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近红外荧光相关光谱法监测人血液中的药物纳米载体。

Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy.

机构信息

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.

Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.

出版信息

Nat Commun. 2018 Dec 13;9(1):5306. doi: 10.1038/s41467-018-07755-0.


DOI:10.1038/s41467-018-07755-0
PMID:30546066
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6294246/
Abstract

Nanocarrier-based drug delivery is a promising therapeutic approach that offers unique possibilities for the treatment of various diseases. However, inside the blood stream, nanocarriers' properties may change significantly due to interactions with proteins, aggregation, decomposition or premature loss of cargo. Thus, a method for precise, in situ characterization of drug nanocarriers in blood is needed. Here we show how the fluorescence correlation spectroscopy that is a well-established method for measuring the size, loading efficiency and stability of drug nanocarriers in aqueous solutions can be used to directly characterize drug nanocarriers in flowing blood. As the blood is not transparent for visible light and densely crowded with cells, we label the nanocarriers or their cargo with near-infrared fluorescent dyes and fit the experimental autocorrelation functions with an analytical model accounting for the presence of blood cells. The developed methodology contributes towards quantitative understanding of the in vivo behavior of nanocarrier-based therapeutics.

摘要

基于纳米载体的药物输送是一种很有前途的治疗方法,为治疗各种疾病提供了独特的可能性。然而,在血流中,纳米载体的性质由于与蛋白质的相互作用、聚集、分解或货物的过早损失而可能发生显著变化。因此,需要一种精确的、原位的方法来表征血液中的药物纳米载体。在这里,我们展示了如何将荧光相关光谱法用于测量水溶液中药物纳米载体的大小、装载效率和稳定性,该方法可以直接用于在流动的血液中对药物纳米载体进行表征。由于血液对可见光不透明,并且细胞密集,我们用近红外荧光染料标记纳米载体或其货物,并根据包含血细胞的分析模型拟合实验自相关函数。所开发的方法有助于定量理解基于纳米载体的治疗剂的体内行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/e3e03a5794a3/41467_2018_7755_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/a89f0b81e066/41467_2018_7755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/d292d051424d/41467_2018_7755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/ad057072779b/41467_2018_7755_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/e3e03a5794a3/41467_2018_7755_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/a89f0b81e066/41467_2018_7755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/d292d051424d/41467_2018_7755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/ad057072779b/41467_2018_7755_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/6294246/e3e03a5794a3/41467_2018_7755_Fig4_HTML.jpg

相似文献

[1]
Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy.

Nat Commun. 2018-12-13

[2]
In vivo Near-infrared Fluorescence Tumor Imaging Using DiR-loaded Nanocarriers.

Curr Drug Deliv. 2016

[3]
Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy.

Macromol Rapid Commun. 2022-6

[4]
Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream.

Biomacromolecules. 2022-3-14

[5]
A NIR-remote controlled upconverting nanoparticle: an improved tool for living cell dye-labeling.

Nanotechnology. 2015-10-23

[6]
Release, transfer and partition of fluorescent dyes from polymeric nanocarriers to serum proteins monitored by asymmetric flow field-flow fractionation.

J Chromatogr A. 2021-3-29

[7]
Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo.

Colloids Surf B Biointerfaces. 2017-8-1

[8]
Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery.

Biomaterials. 2018-2-23

[9]
Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells.

Acta Biomater. 2015-10

[10]
FRET in a Polymeric Nanocarrier: IR-780 and IR-780-PDMS.

Biomacromolecules. 2019-10-18

引用本文的文献

[1]
Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities.

Adv Sci (Weinh). 2024-9

[2]
Performance of nanoparticles for biomedical applications: The / discrepancy.

Biophys Rev (Melville). 2022-2-1

[3]
Fluorescence Correlation Spectroscopy as a Versatile Method to Define Aptamer-Protein Interactions with Single-Molecule Sensitivity.

Anal Chem. 2024-1-9

[4]
Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery.

AAPS J. 2023-10-2

[5]
Tuning the Cross-Linking Density and Cross-Linker in Core Cross-Linked Polymeric Micelles and Its Effects on the Particle Stability in Human Blood Plasma and Mice.

Biomacromolecules. 2023-8-14

[6]
Revealing Population Heterogeneity in Vesicle-Based Nanomedicines Using Automated, Single Particle Raman Analysis.

ACS Nano. 2023-6-27

[7]
Efficient Self-Immolative RAFT End Group Modification for Macromolecular Immunodrug Delivery.

Biomacromolecules. 2023-5-8

[8]
Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream.

Biomacromolecules. 2022-3-14

[9]
Quantitative Pulmonary Neutrophil Dynamics Using Computer-Vision Stabilized Intravital Imaging.

Am J Respir Cell Mol Biol. 2022-1

[10]
Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems.

Pharmaceutics. 2021-6-11

本文引用的文献

[1]
Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step.

ACS Macro Lett. 2017-10-17

[2]
Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models.

ACS Nano. 2018-8-15

[3]
In situ detection of the protein corona in complex environments.

Nat Commun. 2017-11-16

[4]
Engineering and physical sciences in oncology: challenges and opportunities.

Nat Rev Cancer. 2017-10-13

[5]
Physicochemical characterization of drug nanocarriers.

Int J Nanomedicine. 2017-7-13

[6]
The role of nanotechnology in the treatment of viral infections.

Ther Adv Infect Dis. 2017-7

[7]
Impact of plasma protein binding on cargo release by thermosensitive liposomes probed by fluorescence correlation spectroscopy.

Eur J Pharm Biopharm. 2017-6-23

[8]
Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures.

Angew Chem Int Ed Engl. 2017-7-6

[9]
Diverse Applications of Nanomedicine.

ACS Nano. 2017-3-14

[10]
Monitoring integrity and localization of modified single-stranded RNA oligonucleotides using ultrasensitive fluorescence methods.

PLoS One. 2017-3-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索