Suppr超能文献

指令组装(iA):一种控制细胞命运的分子过程。

Instructed-Assembly (iA): A Molecular Process for Controlling Cell Fate.

作者信息

He Hongjian, Xu Bing

机构信息

Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA.

出版信息

Bull Chem Soc Jpn. 2018;91(6):900-906. doi: 10.1246/bcsj.20180038. Epub 2018 Mar 10.

Abstract

Instructed-assembly (iAssembly or iA) refers to the formation of ordered superstructures of molecules as the consequence of at least one trigger event (e.g., a reaction or a ligand-receptor interaction). As a biomimetic process that transforms from an equilibrium to another equilibrium, iA has emerging as a powerful approach to provide spatiotemporal control for a range of potential biomedical applications, including molecular imaging, cancer therapy, and tissue engineering. This account introduces the general concept of iA in the context of cells and illustrates how to achieve iA for applications. By mainly describing the representative examples of iA and its applications in complex environment, such as cells or animals, and providing the perspectives of the future development of iA, we intend to show that, as a process that bridges self-assembly and self-organization, iA offers chemists a facile mean to explore the emergent properties of molecular assemblies and the dynamics of molecular processes to control cell fate. Particularly, iA promises many wonderful surprises and useful applications in physical and/or life sciences when multiple processes (e.g., self-assembly, instructed-assembly, and self-organization) are taking place simultaneously.

摘要

指令组装(iAssembly或iA)是指由于至少一个触发事件(例如反应或配体-受体相互作用)而形成分子的有序超结构。作为一种从一种平衡转变为另一种平衡的仿生过程,iA已成为一种强大的方法,可为一系列潜在的生物医学应用提供时空控制,包括分子成像、癌症治疗和组织工程。本综述在细胞背景下介绍了iA的一般概念,并说明了如何实现用于应用的iA。通过主要描述iA在复杂环境(如细胞或动物)中的代表性实例及其应用,并提供iA未来发展的展望,我们旨在表明,作为一种连接自组装和自组织的过程,iA为化学家提供了一种简便的手段,以探索分子组装的涌现特性和控制细胞命运的分子过程动力学。特别是,当多个过程(例如自组装、指令组装和自组织)同时发生时,iA在物理和/或生命科学中有望带来许多奇妙的惊喜和有用的应用。

相似文献

1
Instructed-Assembly (iA): A Molecular Process for Controlling Cell Fate.
Bull Chem Soc Jpn. 2018;91(6):900-906. doi: 10.1246/bcsj.20180038. Epub 2018 Mar 10.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Nanoscale Assemblies of Small Molecules Control the Fate of Cells.
Nano Today. 2015 Oct;10(5):615-630. doi: 10.1016/j.nantod.2015.09.001. Epub 2015 Oct 20.
4
Enzyme-Instructed Self-Assembly of Peptides: From Concept to Representative Applications.
Chem Asian J. 2022 Apr 1;17(7):e202200094. doi: 10.1002/asia.202200094. Epub 2022 Mar 4.
5
Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment.
Langmuir. 2013 Dec 10;29(49):15191-200. doi: 10.1021/la403457c. Epub 2013 Dec 2.
6
Exploring and Controlling the Polymorphism in Supramolecular Assemblies of Carbohydrates and Proteins.
Acc Chem Res. 2020 Apr 21;53(4):740-751. doi: 10.1021/acs.accounts.9b00552. Epub 2020 Mar 16.
7
Bioinspired assembly of small molecules in cell milieu.
Chem Soc Rev. 2017 May 9;46(9):2421-2436. doi: 10.1039/c6cs00656f.
8
Self-organization in coordination-driven self-assembly.
Acc Chem Res. 2009 Oct 20;42(10):1554-63. doi: 10.1021/ar900077c.
9
Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices.
Acc Chem Res. 2024 Jan 16;57(2):222-233. doi: 10.1021/acs.accounts.3c00603. Epub 2024 Jan 3.
10
Dynamic nanoparticle assemblies.
Acc Chem Res. 2012 Nov 20;45(11):1916-26. doi: 10.1021/ar200305f. Epub 2012 Mar 26.

引用本文的文献

1
Dynamic Flow-Assisted Nanoarchitectonics.
ACS Appl Mater Interfaces. 2025 Apr 30;17(17):24778-24806. doi: 10.1021/acsami.5c03820. Epub 2025 Apr 21.
2
In Situ Synthesis of an Anticancer Peptide Amphiphile Using Tyrosine Kinase Overexpressed in Cancer Cells.
JACS Au. 2022 Jul 28;2(9):2023-2028. doi: 10.1021/jacsau.2c00301. eCollection 2022 Sep 26.
3
Enzymatically Forming Cell Compatible Supramolecular Assemblies of Tryptophan-Rich Short Peptides.
Pept Sci (Hoboken). 2021 Mar;113(2). doi: 10.1002/pep2.24173. Epub 2020 Jun 2.
4
Development of an Amino Sugar-Based Supramolecular Hydrogelator with Reduction Responsiveness.
JACS Au. 2021 Jul 22;1(10):1639-1646. doi: 10.1021/jacsau.1c00270. eCollection 2021 Oct 25.
6
Fullerene Nanoarchitectonics with Shape-Shifting.
Materials (Basel). 2020 May 15;13(10):2280. doi: 10.3390/ma13102280.
7
Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications.
Nanomaterials (Basel). 2020 Mar 29;10(4):639. doi: 10.3390/nano10040639.
8
Starch-Mediated Immobilization, Photochemical Reduction, and Gas Sensitivity of Graphene Oxide Films.
ACS Omega. 2020 Mar 5;5(10):5001-5012. doi: 10.1021/acsomega.9b03892. eCollection 2020 Mar 17.
9
Review of advanced sensor devices employing nanoarchitectonics concepts.
Beilstein J Nanotechnol. 2019 Oct 16;10:2014-2030. doi: 10.3762/bjnano.10.198. eCollection 2019.
10
Enzyme-Instructed Peptide Assemblies Selectively Inhibit Bone Tumors.
Chem. 2019 Sep 12;5(9):2442-2449. doi: 10.1016/j.chempr.2019.06.020. Epub 2019 Jul 22.

本文引用的文献

2
Enzymatic Cleavage of Branched Peptides for Targeting Mitochondria.
J Am Chem Soc. 2018 Jan 31;140(4):1215-1218. doi: 10.1021/jacs.7b11582. Epub 2018 Jan 19.
3
Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation.
Bioconjug Chem. 2018 Apr 18;29(4):826-837. doi: 10.1021/acs.bioconjchem.7b00798. Epub 2018 Jan 22.
4
Branched peptides for enzymatic supramolecular hydrogelation.
Chem Commun (Camb). 2017 Dec 19;54(1):86-89. doi: 10.1039/c7cc08421h.
5
Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging.
Nat Commun. 2017 Nov 23;8(1):1731. doi: 10.1038/s41467-017-01857-x.
6
An in situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids.
Angew Chem Int Ed Engl. 2017 Dec 18;56(51):16297-16301. doi: 10.1002/anie.201710269. Epub 2017 Nov 22.
7
Fluorous Phase-Directed Peptide Assembly Affords Nano-Peptisomes Capable of Ultrasound-Triggered Cellular Delivery.
Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11404-11408. doi: 10.1002/anie.201704649. Epub 2017 Aug 16.
8
Enzyme-assisted peptide folding, assembly and anti-cancer properties.
Nanoscale. 2017 Aug 24;9(33):11987-11993. doi: 10.1039/c7nr04370h.
9
Catalytic diversity in self-propagating peptide assemblies.
Nat Chem. 2017 Aug;9(8):805-809. doi: 10.1038/nchem.2738. Epub 2017 Feb 27.
10
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion.
J Am Chem Soc. 2017 Jul 5;139(26):8995-9000. doi: 10.1021/jacs.7b03878. Epub 2017 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验