Suppr超能文献

在维护自由的同时保护生命:关于利用人工智能预防自杀的伦理建议。

Protecting Life While Preserving Liberty: Ethical Recommendations for Suicide Prevention With Artificial Intelligence.

作者信息

McKernan Lindsey C, Clayton Ellen W, Walsh Colin G

机构信息

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.

Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

Front Psychiatry. 2018 Dec 3;9:650. doi: 10.3389/fpsyt.2018.00650. eCollection 2018.

Abstract

In the United States, suicide increased by 24% in the past 20 years, and suicide risk identification at point-of-care remains a cornerstone of the effort to curb this epidemic (1). As risk identification is difficult because of symptom under-reporting, timing, or lack of screening, healthcare systems rely increasingly on risk scoring and now artificial intelligence (AI) to assess risk. AI remains the science of solving problems and accomplishing tasks, through automated or computational means, that normally require human intelligence. This science is decades-old and includes traditional predictive statistics and machine learning. Only in the last few years has it been applied rigorously in suicide risk prediction and prevention. Applying AI in this context raises significant ethical concern, particularly in balancing beneficence and respecting personal autonomy. To navigate the ethical issues raised by suicide risk prediction, we provide recommendations in three areas-communication, consent, and controls-for both providers and researchers (2).

摘要

在美国,自杀率在过去20年中上升了24%,而在医疗点进行自杀风险识别仍然是遏制这一流行病努力的基石(1)。由于症状报告不足、时机问题或缺乏筛查,风险识别很困难,医疗系统越来越依赖风险评分以及现在的人工智能(AI)来评估风险。人工智能仍然是通过自动化或计算手段解决通常需要人类智能才能解决的问题和完成任务的科学。这门科学已有数十年历史,包括传统的预测统计和机器学习。只是在过去几年中,它才被严格应用于自杀风险预测和预防。在这种情况下应用人工智能引发了重大的伦理问题,特别是在平衡行善和尊重个人自主权方面。为了应对自杀风险预测引发的伦理问题,我们针对提供者和研究人员在沟通、同意和控制这三个领域提供了建议(2)。

相似文献

1
Protecting Life While Preserving Liberty: Ethical Recommendations for Suicide Prevention With Artificial Intelligence.
Front Psychiatry. 2018 Dec 3;9:650. doi: 10.3389/fpsyt.2018.00650. eCollection 2018.
4
Artificial Intelligence and Ethics in Dentistry: A Scoping Review.
J Dent Res. 2021 Dec;100(13):1452-1460. doi: 10.1177/00220345211013808. Epub 2021 Jun 1.
6
7
Teasing out Artificial Intelligence in Medicine: An Ethical Critique of Artificial Intelligence and Machine Learning in Medicine.
J Bioeth Inq. 2021 Mar;18(1):121-139. doi: 10.1007/s11673-020-10080-1. Epub 2021 Jan 7.
9
Ethical considerations about artificial intelligence for prognostication in intensive care.
Intensive Care Med Exp. 2019 Dec 10;7(1):70. doi: 10.1186/s40635-019-0286-6.
10
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.

引用本文的文献

1
Applications of Large Language Models in the Field of Suicide Prevention: Scoping Review.
J Med Internet Res. 2025 Jan 23;27:e63126. doi: 10.2196/63126.
2
Identifying Predictors of Psychological Problems Among Adolescents With Congenital Heart Disease for Referral to Psychological Care: A Pilot Study.
CJC Pediatr Congenit Heart Dis. 2022 Dec 12;2(1):3-11. doi: 10.1016/j.cjcpc.2022.12.001. eCollection 2023 Feb.
3
The Ethics of Risk Prediction for Psychosis and Suicide Attempt in Youth Mental Health.
J Pediatr. 2023 Dec;263:113583. doi: 10.1016/j.jpeds.2023.113583. Epub 2023 Jun 21.
6
A Critical Review of Text Mining Applications for Suicide Research.
Curr Epidemiol Rep. 2022;9(3):126-134. doi: 10.1007/s40471-022-00293-w. Epub 2022 Jul 26.
7
Workplace health surveillance and COVID-19: algorithmic health discrimination and cancer survivors.
J Cancer Surviv. 2022 Feb;16(1):200-212. doi: 10.1007/s11764-021-01144-1. Epub 2022 Feb 2.
8
Risky business: a scoping review for communicating results of predictive models between providers and patients.
JAMIA Open. 2021 Nov 12;4(4):ooab092. doi: 10.1093/jamiaopen/ooab092. eCollection 2021 Oct.
10
Machine Learning and Natural Language Processing in Mental Health: Systematic Review.
J Med Internet Res. 2021 May 4;23(5):e15708. doi: 10.2196/15708.

本文引用的文献

1
Outpatient Engagement and Predicted Risk of Suicide Attempts in Fibromyalgia.
Arthritis Care Res (Hoboken). 2019 Sep;71(9):1255-1263. doi: 10.1002/acr.23748. Epub 2019 Jul 23.
2
Predicting Suicide Attempts and Suicide Deaths Following Outpatient Visits Using Electronic Health Records.
Am J Psychiatry. 2018 Oct 1;175(10):951-960. doi: 10.1176/appi.ajp.2018.17101167. Epub 2018 May 24.
3
Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning.
J Child Psychol Psychiatry. 2018 Dec;59(12):1261-1270. doi: 10.1111/jcpp.12916. Epub 2018 Apr 30.
4
Ethical challenges faced by healthcare professionals who care for suicidal patients: a scoping review.
Monash Bioeth Rev. 2018 Jul;35(1-4):50-79. doi: 10.1007/s40592-018-0076-z.
5
Ethical and Practical Considerations in the Use of a Predictive Model to Trigger Suicide Prevention Interventions in Healthcare Settings.
Suicide Life Threat Behav. 2019 Apr;49(2):382-392. doi: 10.1111/sltb.12431. Epub 2018 Jan 18.
6
Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration.
Int J Methods Psychiatr Res. 2017 Sep;26(3). doi: 10.1002/mpr.1575. Epub 2017 Jul 4.
8
Predicting Suicidal Behavior From Longitudinal Electronic Health Records.
Am J Psychiatry. 2017 Feb 1;174(2):154-162. doi: 10.1176/appi.ajp.2016.16010077. Epub 2016 Sep 9.
9
Increase in Suicide in the United States, 1999-2014.
NCHS Data Brief. 2016 Apr(241):1-8.
10
Facilitating Action for Suicide Prevention by Learning Health Care Systems.
Psychiatr Serv. 2016 Aug 1;67(8):830-2. doi: 10.1176/appi.ps.201600068. Epub 2016 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验