Suppr超能文献

力学在突触形成和可塑性中的新兴作用。

The Emerging Role of Mechanics in Synapse Formation and Plasticity.

作者信息

Kilinc Devrim

机构信息

INSERM U1167, Institut Pasteur de Lille, Lille, France.

出版信息

Front Cell Neurosci. 2018 Dec 6;12:483. doi: 10.3389/fncel.2018.00483. eCollection 2018.

Abstract

The regulation of synaptic strength forms the basis of learning and memory, and is a key factor in understanding neuropathological processes that lead to cognitive decline and dementia. While the mechanical aspects of neuronal development, particularly during axon growth and guidance, have been extensively studied, relatively little is known about the mechanical aspects of synapse formation and plasticity. It is established that a filamentous actin network with complex spatiotemporal behavior controls the dendritic spine shape and size, which is thought to be crucial for activity-dependent synapse plasticity. Accordingly, a number of actin binding proteins have been identified as regulators of synapse plasticity. On the other hand, a number of cell adhesion molecules (CAMs) are found in synapses, some of which form transsynaptic bonds to align the presynaptic active zone (PAZ) with the postsynaptic density (PSD). Considering that these CAMs are key components of cellular mechanotransduction, two critical questions emerge: (i) are synapses mechanically regulated? and (ii) does disrupting the transsynaptic force balance lead to (or exacerbate) synaptic failure? In this mini review article, I will highlight the mechanical aspects of synaptic structures-focusing mainly on cytoskeletal dynamics and CAMs-and discuss potential mechanoregulation of synapses and its relevance to neurodegenerative diseases.

摘要

突触强度的调节构成了学习和记忆的基础,并且是理解导致认知衰退和痴呆的神经病理过程的关键因素。虽然神经元发育的力学方面,特别是在轴突生长和导向过程中,已经得到了广泛研究,但关于突触形成和可塑性的力学方面却知之甚少。已确定具有复杂时空行为的丝状肌动蛋白网络控制着树突棘的形状和大小,而树突棘被认为对依赖活动的突触可塑性至关重要。因此,一些肌动蛋白结合蛋白已被鉴定为突触可塑性的调节因子。另一方面,在突触中发现了许多细胞粘附分子(CAMs),其中一些形成跨突触连接,使突触前活性区(PAZ)与突触后致密区(PSD)对齐。鉴于这些CAMs是细胞机械转导的关键组成部分,出现了两个关键问题:(i)突触是否受到力学调节?以及(ii)破坏跨突触力平衡是否会导致(或加剧)突触功能障碍?在这篇小型综述文章中,我将重点介绍突触结构的力学方面——主要关注细胞骨架动力学和CAMs——并讨论突触的潜在机械调节及其与神经退行性疾病的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/861e/6291423/969f002030cd/fncel-12-00483-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验