Suppr超能文献

非靶向 LC-MS 代谢组学的峰注释和验证引擎。

Peak Annotation and Verification Engine for Untargeted LC-MS Metabolomics.

机构信息

Lewis Sigler Institute for Integrative Genomics , Princeton University , Princeton , New Jersey 08544 , United States.

Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States.

出版信息

Anal Chem. 2019 Feb 5;91(3):1838-1846. doi: 10.1021/acs.analchem.8b03132. Epub 2019 Jan 10.

Abstract

Untargeted metabolomics can detect more than 10 000 peaks in a single LC-MS run. The correspondence between these peaks and metabolites, however, remains unclear. Here, we introduce a Peak Annotation and Verification Engine (PAVE) for annotating untargeted microbial metabolomics data. The workflow involves growing cells in C and N isotope-labeled media to identify peaks from biological compounds and their carbon and nitrogen atom counts. Improved deisotoping and deadducting are enabled by algorithms that integrate positive mode, negative mode, and labeling data. To distinguish metabolites and their fragments, PAVE experimentally measures the response of each peak to weak in-source collision induced dissociation, which increases the peak intensity for fragments while decreasing it for their parent ions. The molecular formulas of the putative metabolites are then assigned based on database searching using both m/ z and C/N atom counts. Application of this procedure to Saccharomyces cerevisiae and Escherichia coli revealed that more than 80% of peaks do not label, i.e., are environmental contaminants. More than 70% of the biological peaks are isotopic variants, adducts, fragments, or mass spectrometry artifacts yielding ∼2000 apparent metabolites across the two organisms. About 650 match to a known metabolite formula based on m/ z and C/N atom counts, with 220 assigned structures based on MS/MS and/or retention time to match to authenticated standards. Thus, PAVE enables systematic annotation of LC-MS metabolomics data with only ∼4% of peaks annotated as apparent metabolites.

摘要

非靶向代谢组学可以在单次 LC-MS 运行中检测到超过 10000 个峰。然而,这些峰与代谢物之间的对应关系尚不清楚。在这里,我们介绍了一种用于注释非靶向微生物代谢组学数据的峰注释和验证引擎(PAVE)。该工作流程涉及在 C 和 N 同位素标记的培养基中培养细胞,以鉴定来自生物化合物及其碳和氮原子数的峰。通过整合正模式、负模式和标记数据的算法,实现了改进的去同位素化和去加成。为了区分代谢物及其片段,PAVE 通过实验测量每个峰对弱源内碰撞诱导解离的响应,从而增加片段的峰强度,同时降低其母体离子的峰强度。然后根据数据库搜索,使用 m/z 和 C/N 原子数对假定代谢物的分子式进行分配。将该程序应用于酿酒酵母和大肠杆菌,结果表明,超过 80%的峰不标记,即属于环境污染物。超过 70%的生物峰是同位素变体、加合物、片段或质谱伪影,这两种生物产生的表观代谢物约有 2000 种。约有 650 种根据 m/z 和 C/N 原子数匹配到已知代谢物公式,其中 220 种根据 MS/MS 和/或保留时间分配结构以匹配经认证的标准。因此,PAVE 可以对 LC-MS 代谢组学数据进行系统注释,只有约 4%的峰被注释为表观代谢物。

相似文献

1
Peak Annotation and Verification Engine for Untargeted LC-MS Metabolomics.
Anal Chem. 2019 Feb 5;91(3):1838-1846. doi: 10.1021/acs.analchem.8b03132. Epub 2019 Jan 10.
2
Improved Annotation of Untargeted Metabolomics Data through Buffer Modifications That Shift Adduct Mass and Intensity.
Anal Chem. 2020 Sep 1;92(17):11573-11581. doi: 10.1021/acs.analchem.0c00985. Epub 2020 Aug 12.
3
Metabolite discovery through global annotation of untargeted metabolomics data.
Nat Methods. 2021 Nov;18(11):1377-1385. doi: 10.1038/s41592-021-01303-3. Epub 2021 Oct 28.
4
Targeting unique biological signals on the fly to improve MS/MS coverage and identification efficiency in metabolomics.
Anal Chim Acta. 2021 Mar 8;1149:338210. doi: 10.1016/j.aca.2021.338210. Epub 2021 Jan 12.
5
High-throughput Saccharomyces cerevisiae cultivation method for credentialing-based untargeted metabolomics.
Anal Bioanal Chem. 2023 Jul;415(17):3415-3434. doi: 10.1007/s00216-023-04724-5. Epub 2023 May 22.
7
8
Autonomous METLIN-Guided In-source Fragment Annotation for Untargeted Metabolomics.
Anal Chem. 2019 Mar 5;91(5):3246-3253. doi: 10.1021/acs.analchem.8b03126. Epub 2019 Feb 11.
10
geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics.
Anal Chem. 2016 Jan 5;88(1):621-8. doi: 10.1021/acs.analchem.5b03628. Epub 2015 Dec 18.

引用本文的文献

2
CLN3 disease disrupts very early postnatal hippocampal maturation.
Sci Rep. 2025 Jul 8;15(1):24411. doi: 10.1038/s41598-025-02010-1.
3
Comprehensive profiling of folates across polyglutamylation and one-carbon states.
Metabolomics. 2025 May 27;21(3):71. doi: 10.1007/s11306-025-02269-5.
4
Multi-omics characterization of early chronic obstructive pulmonary disease.
Respir Res. 2025 Apr 28;26(1):167. doi: 10.1186/s12931-025-03250-5.
5
A two-stage metabolome refining pipeline for natural products discovery.
Synth Syst Biotechnol. 2025 Feb 5;10(2):600-609. doi: 10.1016/j.synbio.2025.01.006. eCollection 2025 Jun.
6
Systematic pre-annotation explains the "dark matter" in LC-MS metabolomics.
bioRxiv. 2025 Mar 25:2025.02.04.636472. doi: 10.1101/2025.02.04.636472.
9
Annotation of Metabolites in Stable Isotope Tracing Untargeted Metabolomics via Khipu-web.
J Am Soc Mass Spectrom. 2024 Dec 4;35(12):2824-2835. doi: 10.1021/jasms.4c00175. Epub 2024 Sep 30.

本文引用的文献

2
Metabolomics and Isotope Tracing.
Cell. 2018 May 3;173(4):822-837. doi: 10.1016/j.cell.2018.03.055.
5
Glucose feeds the TCA cycle via circulating lactate.
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
6
Annotation: A Computational Solution for Streamlining Metabolomics Analysis.
Anal Chem. 2018 Jan 2;90(1):480-489. doi: 10.1021/acs.analchem.7b03929. Epub 2017 Nov 3.
7
Lactate Metabolism in Human Lung Tumors.
Cell. 2017 Oct 5;171(2):358-371.e9. doi: 10.1016/j.cell.2017.09.019.
8
Systems-Level Annotation of a Metabolomics Data Set Reduces 25 000 Features to Fewer than 1000 Unique Metabolites.
Anal Chem. 2017 Oct 3;89(19):10397-10406. doi: 10.1021/acs.analchem.7b02380. Epub 2017 Sep 15.
9
MetExtract II: A Software Suite for Stable Isotope-Assisted Untargeted Metabolomics.
Anal Chem. 2017 Sep 5;89(17):9518-9526. doi: 10.1021/acs.analchem.7b02518. Epub 2017 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验