Suppr超能文献

一种自修复、全有机、导电的复合肽水凝胶作为压力传感器和产电细胞软质基底

A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate.

作者信息

Chakraborty Priyadarshi, Guterman Tom, Adadi Nofar, Yadid Moran, Brosh Tamar, Adler-Abramovich Lihi, Dvir Tal, Gazit Ehud

机构信息

Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv 6997801 , Israel.

Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 6997801 , Israel.

出版信息

ACS Nano. 2019 Jan 22;13(1):163-175. doi: 10.1021/acsnano.8b05067. Epub 2018 Dec 31.

Abstract

Conducting polymer hydrogels (CPHs) emerge as excellent functional materials, as they harness the advantages of conducting polymers with the mechanical properties and continuous 3D nanostructures of hydrogels. This bicomponent organization results in soft, all-organic, conducting micro-/nanostructures with multifarious material applications. However, the application of CPHs as functional materials for biomedical applications is currently limited due to the necessity to combine the features of biocompatibility, self-healing, and fine-tuning of the mechanical properties. To overcome this issue, we choose to combine a protected dipeptide as the supramolecular gelator, owing to its intrinsic biocompatibility and excellent gelation ability, with the conductive polymer polyaniline (PAni), which was polymerized in situ. Thus, a two-component, all-organic, conducting hydrogel was formed. Spectroscopic evidence reveals the formation of the emeraldine salt form of PAni by intrinsic doping. The composite hydrogel is mechanically rigid with a very high storage modulus ( G') value of ∼2 MPa, and the rigidity was tuned by changing the peptide concentration. The hydrogel exhibits ohmic conductivity, pressure sensitivity, and, importantly, self-healing features. By virtue of its self-healing property, the polymeric nonmetallic hydrogel can reinstate its intrinsic conductivity when two of its macroscopically separated blocks are rejoined. High cell viability of cardiomyocytes grown on the composite hydrogel demonstrates its noncytotoxicity. These combined attributes of the hydrogel allowed its utilization for dynamic range pressure sensing and as a conductive interface for electrogenic cardiac cells. The composite hydrogel supports cardiomyocyte organization into a spontaneously contracting system. The composite hydrogel thus has considerable potential for various applications.

摘要

导电聚合物水凝胶(CPHs)作为优异的功能材料而出现,因为它们兼具导电聚合物的优点以及水凝胶的机械性能和连续的三维纳米结构。这种双组分结构产生了具有多种材料应用的柔软、全有机导电微/纳米结构。然而,由于需要结合生物相容性、自愈合和机械性能微调等特性,CPHs作为生物医学应用功能材料的应用目前受到限制。为了克服这个问题,我们选择将一种受保护的二肽作为超分子凝胶剂(因其固有的生物相容性和出色的凝胶化能力)与原位聚合的导电聚合物聚苯胺(PAni)相结合。这样,就形成了一种双组分、全有机的导电水凝胶。光谱证据表明通过本征掺杂形成了PAni的翡翠盐形式。复合水凝胶具有机械刚性,储能模量(G')值非常高,约为2 MPa,并且通过改变肽浓度来调节刚性。该水凝胶表现出欧姆导电性、压力敏感性,重要的是还具有自愈合特性。凭借其自愈合特性,当聚合物非金属水凝胶的两个宏观分离块重新连接时,它可以恢复其固有导电性。在复合水凝胶上生长的心肌细胞具有高细胞活力,证明了其无细胞毒性。水凝胶的这些综合特性使其可用于动态范围压力传感以及作为产电心脏细胞的导电界面。复合水凝胶支持心肌细胞组织成自发收缩系统。因此,复合水凝胶在各种应用中具有相当大的潜力。

相似文献

1
A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate.
ACS Nano. 2019 Jan 22;13(1):163-175. doi: 10.1021/acsnano.8b05067. Epub 2018 Dec 31.
2
Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application.
J Colloid Interface Sci. 2021 Sep;597:171-181. doi: 10.1016/j.jcis.2021.04.001. Epub 2021 Apr 5.
3
Nanoengineered Peptide-Based Antimicrobial Conductive Supramolecular Biomaterial for Cardiac Tissue Engineering.
Adv Mater. 2021 Jul;33(26):e2008715. doi: 10.1002/adma.202008715. Epub 2021 May 25.
6
Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
Acta Biomater. 2022 Feb;139:4-21. doi: 10.1016/j.actbio.2021.04.027. Epub 2021 Apr 22.
7
Natural Glycyrrhizic Acid-Tailored Homogeneous Conductive Polyaniline Hydrogel as a Flexible Strain Sensor.
ACS Appl Mater Interfaces. 2022 Nov 16;14(45):51394-51403. doi: 10.1021/acsami.2c16129. Epub 2022 Nov 3.
8
Fabrication of conductive polyaniline hydrogel using porogen leaching and projection microstereolithography.
J Mater Chem B. 2015 Jul 14;3(26):5352-5360. doi: 10.1039/c5tb00629e. Epub 2015 Jun 10.
9
Highly Stretchable, Ultra-Sensitive, and Self-Healable Multifunctional Flexible Conductive Hydrogel Sensor for Motion Detection and Information Transmission.
ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29499-29510. doi: 10.1021/acsami.3c06222. Epub 2023 Jun 11.
10
A short review on the synthesis and advance applications of polyaniline hydrogels.
RSC Adv. 2022 Jun 30;12(30):19122-19132. doi: 10.1039/d2ra02674k. eCollection 2022 Jun 29.

引用本文的文献

1
How Advanced are Conductive Nanocomposite Hydrogels for Repairing and Monitoring Myocardial Infarction?
Int J Nanomedicine. 2025 May 28;20:6777-6812. doi: 10.2147/IJN.S503445. eCollection 2025.
3
Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair.
Bioact Mater. 2025 Mar 9;49:172-192. doi: 10.1016/j.bioactmat.2025.01.013. eCollection 2025 Jul.
4
Electrically conductive "SMART" hydrogels for on-demand drug delivery.
Asian J Pharm Sci. 2025 Feb;20(1):101007. doi: 10.1016/j.ajps.2024.101007. Epub 2024 Dec 11.
5
Formation of Semiconducting Supramolecular Fullerene Aggregates in a Dipeptide Organogel.
Adv Mater Technol. 2020 Jan 23;5(3). doi: 10.1002/admt.201900829. eCollection 2020 Mar.
6
Optimizing Ammonia Detection with a Polyaniline-Magnesia Nano Composite.
Polymers (Basel). 2024 Oct 14;16(20):2892. doi: 10.3390/polym16202892.
7
Study of Nonlinear Optical Properties of a Self-Healing Organic Crystal.
ACS Omega. 2024 Aug 26;9(36):38295-38302. doi: 10.1021/acsomega.4c06466. eCollection 2024 Sep 10.
10
Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk.
Biophys Rev (Melville). 2024 May 8;5(2):021303. doi: 10.1063/5.0181222. eCollection 2024 Jun.

本文引用的文献

1
Nanoengineering gold particle composite fibers for cardiac tissue engineering.
J Mater Chem B. 2013 Oct 21;1(39):5210-5217. doi: 10.1039/c3tb20584c. Epub 2013 Jul 8.
2
Fabrication of conductive polyaniline hydrogel using porogen leaching and projection microstereolithography.
J Mater Chem B. 2015 Jul 14;3(26):5352-5360. doi: 10.1039/c5tb00629e. Epub 2015 Jun 10.
3
Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels.
Chem Commun (Camb). 2017 Aug 24;53(69):9586-9589. doi: 10.1039/c7cc04187j.
4
Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.
Acta Biomater. 2017 Sep 1;59:68-81. doi: 10.1016/j.actbio.2017.06.036. Epub 2017 Jun 27.
6
Controlling the network type in self-assembled dipeptide hydrogels.
Soft Matter. 2017 Mar 1;13(9):1914-1919. doi: 10.1039/c6sm02666d.
7
Modular assembly of thick multifunctional cardiac patches.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1898-1903. doi: 10.1073/pnas.1615728114. Epub 2017 Feb 6.
8
Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture.
Adv Mater. 2017 Apr;29(16). doi: 10.1002/adma.201604062. Epub 2017 Jan 23.
9
Metastable hydrogels from aromatic dipeptides.
Chem Commun (Camb). 2016 Nov 24;52(96):13889-13892. doi: 10.1039/c6cc05821c.
10
Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.
ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17138-50. doi: 10.1021/acsami.6b04911. Epub 2016 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验