Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.
Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.
Genome Biol Evol. 2019 Jan 1;11(1):270-294. doi: 10.1093/gbe/evy275.
Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.
蓝细菌是各种生态系统中占主导地位的初级生产者,它们栖息在海洋、淡水和陆地生境中。基于其产氧光合作用,它们被认为能合成大量的次生代谢产物,这使它们成为生物技术应用的有前途的候选物。最先进的测序和分析技术以及几种无菌株的可用性为理解蓝细菌的隐藏代谢潜力提供了新的机会,超越了单一模式生物的范围。在这里,我们报告了 5 种非海洋蓝细菌 Nostoc sp. DSM 107007、Anabaena variabilis DSM 107003、Calothrix desertica DSM 106972、Chroococcidiopsis cubana DSM 107010、Chlorogloeopsis sp. PCC 6912 和参考菌株 Synechocystis sp. PCC 6803 的全面基因组和代谢分析。属于 Nostocales 目、主要属于 B1 分支的 5 个菌株代表了形态高度多样化的 B2 分支的姊妹谱系的进化深度,其中包括 PCC 6803 菌株。基因组测序、光镜和扫描电子显微镜揭示了分析菌株的特征和无菌性。系统发育比较表明,16S rRNA 基因对蓝细菌的分类存在局限性,但证明了基于 43 个保守蛋白标记物的多位点序列比对分析的适用性。核心碳代谢物代谢物的分析显示了部分高度保守的代谢途径以及谱系特异性途径,如乙醛酸支路,该途径至少通过两次水平基因转移被蓝细菌获得。当我们比较白天和黑夜样本之间的变化时,观察到了主要的代谢变化。此外,我们的研究结果显示了蓝细菌的代谢潜力超出了作为模式生物的 Synechocystis sp. PCC 6803,并可能鼓励蓝细菌社区将其研究扩展到具有更高代谢活性的相关生物。