Suppr超能文献

beRBP:人类 RNA 结合蛋白结合预测。

beRBP: binding estimation for human RNA-binding proteins.

机构信息

Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.

出版信息

Nucleic Acids Res. 2019 Mar 18;47(5):e26. doi: 10.1093/nar/gky1294.

Abstract

Identifying binding targets of RNA-binding proteins (RBPs) can greatly facilitate our understanding of their functional mechanisms. Most computational methods employ machine learning to train classifiers on either RBP-specific targets or pooled RBP-RNA interactions. The former strategy is more powerful, but it only applies to a few RBPs with a large number of known targets; conversely, the latter strategy sacrifices prediction accuracy for a wider application, since specific interaction features are inevitably obscured through pooling heterogeneous datasets. Here, we present beRBP, a dual approach to predict human RBP-RNA interaction given PWM of a RBP and one RNA sequence. Based on Random Forests, beRBP not only builds a specific model for each RBP with a decent number of known targets, but also develops a general model for RBPs with limited or null known targets. The specific and general models both compared well with existing methods on three benchmark datasets. Notably, the general model achieved a better performance than existing methods on most novel RBPs. Overall, as a composite solution overarching the RBP-specific and RBP-General strategies, beRBP is a promising tool for human RBP binding estimation with good prediction accuracy and a broad application scope.

摘要

鉴定 RNA 结合蛋白 (RBPs) 的结合靶标可以极大地帮助我们理解它们的功能机制。大多数计算方法都使用机器学习在 RBP 特异性靶标或 pooled RBP-RNA 相互作用上训练分类器。前者策略更强大,但它仅适用于少数具有大量已知靶标的 RBP;相反,后者策略为了更广泛的应用而牺牲了预测准确性,因为通过汇集异构数据集,不可避免地会掩盖特定的相互作用特征。在这里,我们提出了 beRBP,这是一种基于 PWM 的预测人类 RBP-RNA 相互作用的双重方法,给定一个 RBP 和一个 RNA 序列。基于随机森林,beRBP 不仅为具有一定数量已知靶标的每个 RBP 构建了一个特定的模型,还为具有有限或零已知靶标的 RBP 开发了一个通用模型。具体模型和通用模型在三个基准数据集上均与现有方法进行了比较。值得注意的是,通用模型在大多数新型 RBP 上的性能优于现有方法。总体而言,作为 RBP 特异性和 RBP 通用性策略的综合解决方案,beRBP 是一种很有前途的人类 RBP 结合估计工具,具有良好的预测准确性和广泛的应用范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd29/6411931/94a422385084/gky1294fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验