Suppr超能文献

利用高光谱 VIS/NIR 反射成像技术对冷冻玉米种子进行分类。

Classification of Frozen Corn Seeds Using Hyperspectral VIS/NIR Reflectence Imaging.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Molecules. 2019 Jan 2;24(1):149. doi: 10.3390/molecules24010149.

Abstract

A VIS/NIR hyperspectral imaging system was used to classify three different degrees of freeze-damage in corn seeds. Using image processing methods, the hyperspectral image of the corn seed embryo was obtained first. To find a relatively better method for later imaging visualization, four different pretreatment methods (no pretreatment, multiplicative scatter correction (MSC), standard normal variation (SNV) and 5 points and 3 times smoothing (5-3 smoothing)), four wavelength selection algorithms (successive projection algorithm (SPA), principal component analysis (PCA), X-loading and full-band method) and three different classification modeling methods (partial least squares-discriminant analysis (PLS-DA), K-nearest neighbor (KNN) and support vector machine (SVM)) were applied to make a comparison. Next, the visualization images according to a mean spectrum to mean spectrum (M2M) and a mean spectrum to pixel spectrum (M2P) were compared in order to better represent the freeze damage to the seed embryos. It was concluded that the 5-3 smoothing method and SPA wavelength selection method applied to the modeling can improve the signal-to-noise ratio, classification accuracy of the model (more than 90%). The final classification results of the method M2P were better than the method M2M, which had fewer numbers of misclassified corn seed samples and the samples could be visualized well.

摘要

使用可见/近红外高光谱成像系统对三种不同程度的玉米种子冻害进行分类。首先采用图像处理方法获取玉米种子胚的高光谱图像。为了找到一种相对较好的成像可视化方法,应用了四种不同的预处理方法(无预处理、乘法散射校正(MSC)、标准正态变量(SNV)和 5 点 3 次平滑(5-3 平滑))、四种波长选择算法(连续投影算法(SPA)、主成分分析(PCA)、X-加载和全波段方法)和三种不同的分类建模方法(偏最小二乘判别分析(PLS-DA)、K-最近邻(KNN)和支持向量机(SVM))进行比较。接下来,根据均谱到均谱(M2M)和均谱到像素谱(M2P)比较可视化图像,以便更好地表示种子胚胎的冻害。结果表明,应用于建模的 5-3 平滑法和 SPA 波长选择法可以提高信噪比和模型的分类精度(超过 90%)。方法 M2P 的最终分类结果优于方法 M2M,其玉米种子样本的错分类数量较少,样本可视化效果较好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验