Jin Zhongwei, Mei Shengtao, Chen Shuqing, Li Ying, Zhang Chen, He Yanliang, Yu Xia, Yu Changyuan, Yang Joel K W, Luk'yanchuk Boris, Xiao Shumin, Qiu Cheng-Wei
Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , Singapore 117583.
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Nanhai Avenue 3688 , Shenzhen , Guangdong 518060 , People's Republic of China.
ACS Nano. 2019 Jan 22;13(1):821-829. doi: 10.1021/acsnano.8b08333. Epub 2019 Jan 7.
With the recent burgeoning advances in nano-optics, ultracompact, miniaturized photonic devices with high-quality and spectacular functionalities are highly desired. Such devices' design paradigms often call for the solution of a complex inverse nonanalytical/semianalytical problem. However, currently reported strategies dealing with amplitude-controlled meta-optics devices achieved limited functionalities mainly due to restricted search space and demanding computational schemes. Here, we established a segmented hierarchical evolutionary algorithm, aiming to solve large-pixelated, complex inverse meta-optics design and fully demonstrate the targeted performance. This paradigm allows significantly extended search space at a rapid converging speed. As typical complex proof-of-concept examples, large-pixelated meta-holograms are chosen to demonstrate the validity of our design paradigm. An improved fitness function is proposed to reinforce the performance balance among image pixels, so that the image quality is improved and computing speed is further accelerated. Broadband and full-color meta-holograms with high image fidelities using binary amplitude control are demonstrated experimentally. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.
随着纳米光学领域近年来的蓬勃发展,人们迫切需要具有高质量和卓越功能的超紧凑、小型化光子器件。此类器件的设计范式通常需要解决复杂的逆非解析/半解析问题。然而,目前报道的处理振幅控制超颖光学器件的策略,由于搜索空间受限和计算方案要求苛刻,实现的功能有限。在此,我们建立了一种分段分层进化算法,旨在解决大像素、复杂的逆超颖光学设计问题,并充分展示目标性能。这种范式允许以快速收敛速度显著扩展搜索空间。作为典型的复杂概念验证示例,选择大像素超颖全息图来证明我们设计范式的有效性。提出了一种改进的适应度函数,以加强图像像素之间的性能平衡,从而提高图像质量并进一步加快计算速度。通过实验展示了使用二元振幅控制的具有高图像保真度的宽带和全彩超颖全息图。我们的工作可能在未来纳米级高质量光学器件的先进设计中找到重要应用。