Suppr超能文献

探测三维形貌中细胞的反应。

Probing cellular response to topography in three dimensions.

机构信息

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA.

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA.

出版信息

Biomaterials. 2019 Mar;197:101-118. doi: 10.1016/j.biomaterials.2019.01.009. Epub 2019 Jan 8.

Abstract

Biophysical aspects of in vivo tissue microenvironments include microscale mechanical properties, fibrillar alignment, and architecture or topography of the extracellular matrix (ECM). These aspects act in concert with chemical signals from a myriad of diverse ECM proteins to provide cues that drive cellular responses. Here, we used a bottom-up approach to build fibrillar architecture into 3D amorphous hydrogels using magnetic-field driven assembly of paramagnetic colloidal particles functionalized with three types of human ECM proteins found in vivo. We investigated if cells cultured in matrices comprised of fibrils of the same size and arranged in similar geometries will show similar behavior for each of the ECM proteins tested. We were able to resolve spatial heterogeneities in microscale mechanical properties near aligned fibers that were not observed in bulk tissue mechanics. We then used this platform to examine factors contributing to cell alignment in response to topographical cues in 3D laminin-rich matrices. Multiple human cell lines extended protrusions preferentially in directions parallel or perpendicular to aligned fibers independently of the ECM coating. Focal adhesion proteins, as measured by paxillin localization, were mainly diffuse in the cytoplasm, with few puncta localized at the protrusions. Integrin β1 and fascin regulated protrusion extension but not protrusion alignment. Myosin II inhibition did not reduce observed protrusion length. Instead, cells with reduced myosin II activity generated protrusions in random orientations when cultured in hydrogels with aligned fibers. Similarly, myosin II dependence was observed in vivo, where cells no longer aligned along the abluminal surfaces of blood vessels upon treatment with blebbistatin. These data suggest that myosin II can regulate sensing of topography in 3D engineered matrices for both normal and transformed cells.

摘要

生物物理方面的体内组织微环境包括微尺度力学性质、纤维排列以及细胞外基质 (ECM) 的结构或形貌。这些方面与来自各种不同 ECM 蛋白的化学信号协同作用,提供了驱动细胞反应的线索。在这里,我们使用自下而上的方法,使用磁场驱动具有三种体内发现的人 ECM 蛋白的顺磁性胶体颗粒的组装,在 3D 无定形水凝胶中构建纤维状结构。我们研究了在由相同大小的纤维组成且以相似几何形状排列的基质中培养的细胞是否会对每种测试的 ECM 蛋白表现出相似的行为。我们能够解决在未观察到的大块组织力学中靠近纤维排列的微尺度力学性质的空间异质性。然后,我们使用该平台来研究在富含层粘连蛋白的 3D 基质中响应拓扑线索的细胞排列的因素。多种人细胞系优先在与纤维平行或垂直的方向上延伸突起,而与 ECM 涂层无关。通过整联蛋白β1和细丝蛋白的定位来测量的粘着斑蛋白主要在细胞质中扩散,突起处只有少数点状定位。整合素β1 和细丝蛋白调节突起的延伸,但不调节突起的排列。肌球蛋白 II 的抑制并没有减少观察到的突起长度。相反,当在具有纤维排列的水凝胶中培养时,具有降低的肌球蛋白 II 活性的细胞会以随机取向产生突起。同样,在体内也观察到肌球蛋白 II 的依赖性,在用 blebbistatin 处理后,细胞不再沿着血管的基底外侧表面排列。这些数据表明,肌球蛋白 II 可以调节正常和转化细胞对 3D 工程化基质中拓扑结构的感知。

相似文献

1
Probing cellular response to topography in three dimensions.
Biomaterials. 2019 Mar;197:101-118. doi: 10.1016/j.biomaterials.2019.01.009. Epub 2019 Jan 8.
2
Three-Dimensional Patterning of the ECM Microenvironment Using Magnetic Nanoparticle Self Assembly.
Curr Protoc Cell Biol. 2016 Mar 1;70:25.3.1-25.3.14. doi: 10.1002/0471143030.cb2503s70.
3
Directing fibroblast self-assembly to fabricate highly-aligned, collagen-rich matrices.
Acta Biomater. 2018 Nov;81:70-79. doi: 10.1016/j.actbio.2018.09.030. Epub 2018 Sep 27.
4
Engineering fibronectin-templated multi-component fibrillar extracellular matrices to modulate tissue-specific cell response.
Biomaterials. 2024 Jul;308:122560. doi: 10.1016/j.biomaterials.2024.122560. Epub 2024 Apr 1.
5
Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
Acta Biomater. 2009 Oct;5(8):2929-38. doi: 10.1016/j.actbio.2009.05.011. Epub 2009 May 18.
7
Decellularized extracellular matrix-decorated 3D nanofiber scaffolds enhance cellular responses and tissue regeneration.
Acta Biomater. 2024 Aug;184:81-97. doi: 10.1016/j.actbio.2024.06.020. Epub 2024 Jun 21.
8
9
Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
Acta Biomater. 2019 Jan 1;83:221-232. doi: 10.1016/j.actbio.2018.11.010. Epub 2018 Nov 7.

引用本文的文献

2
Diagnostic and prognostic significance of keloid-like collagen remodeling patterns in the extracellular matrix of colorectal cancer.
Pathol Oncol Res. 2024 Jun 6;30:1611789. doi: 10.3389/pore.2024.1611789. eCollection 2024.
3
A Hierarchical Mechanotransduction System: From Macro to Micro.
Adv Sci (Weinh). 2024 Mar;11(11):e2302327. doi: 10.1002/advs.202302327. Epub 2023 Dec 25.
4
Understanding How Cells Probe the World: A Preliminary Step towards Modeling Cell Behavior?
Int J Mol Sci. 2023 Jan 23;24(3):2266. doi: 10.3390/ijms24032266.
5
The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes?
J Exp Clin Cancer Res. 2022 Sep 16;41(1):276. doi: 10.1186/s13046-022-02484-1.
6
Multimodal microscale mechanical mapping of cancer cells in complex microenvironments.
Biophys J. 2022 Oct 4;121(19):3586-3599. doi: 10.1016/j.bpj.2022.09.002. Epub 2022 Sep 5.
7
Unravelling cell migration: defining movement from the cell surface.
Cell Adh Migr. 2022 Dec;16(1):25-64. doi: 10.1080/19336918.2022.2055520.
9
Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies.
Tissue Eng Part B Rev. 2022 Aug;28(4):912-925. doi: 10.1089/ten.TEB.2021.0151. Epub 2021 Dec 6.
10
The effects of surface topography modification on hydrogel properties.
APL Bioeng. 2021 Jul 27;5(3):031509. doi: 10.1063/5.0046076. eCollection 2021 Sep.

本文引用的文献

1
Bimodal sensing of guidance cues in mechanically distinct microenvironments.
Nat Commun. 2018 Nov 20;9(1):4891. doi: 10.1038/s41467-018-07290-y.
4
Methods for Quantifying Fibrillar Collagen Alignment.
Methods Mol Biol. 2017;1627:429-451. doi: 10.1007/978-1-4939-7113-8_28.
5
Contact guidance requires spatial control of leading-edge protrusion.
Mol Biol Cell. 2017 Apr 15;28(8):1043-1053. doi: 10.1091/mbc.E16-11-0769. Epub 2017 Feb 22.
6
Cancer cell motility: lessons from migration in confined spaces.
Nat Rev Cancer. 2017 Feb;17(2):131-140. doi: 10.1038/nrc.2016.123. Epub 2016 Dec 2.
7
Mechanical properties of the tumor stromal microenvironment probed and by -calibrated optical trap-based active microrheology.
Cell Mol Bioeng. 2016 Sep;9(3):398-417. doi: 10.1007/s12195-016-0460-9. Epub 2016 Aug 4.
8
Engineered Models of Confined Cell Migration.
Annu Rev Biomed Eng. 2016 Jul 11;18:159-80. doi: 10.1146/annurev-bioeng-071114-040654.
9
Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK.
Integr Biol (Camb). 2016 Aug 8;8(8):821-35. doi: 10.1039/c6ib00030d. Epub 2016 Jul 7.
10
Three-Dimensional Patterning of the ECM Microenvironment Using Magnetic Nanoparticle Self Assembly.
Curr Protoc Cell Biol. 2016 Mar 1;70:25.3.1-25.3.14. doi: 10.1002/0471143030.cb2503s70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验