Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States.
Department of Medicine , Stanford University School of Medicine , Stanford , California 94305 , United States.
J Am Chem Soc. 2019 Feb 13;141(6):2462-2473. doi: 10.1021/jacs.8b12083. Epub 2019 Feb 4.
Using an engineered pyrrolysyl-tRNA synthetase mutant together with tRNA, we have genetically encoded N-(7-azidoheptanoyl)-l-lysine (AzHeK) by amber codon in Escherichia coli for recombinant expression of a number of AzHeK-containing histone H3 proteins. We assembled in vitro acyl-nucleosomes from these recombinant acyl-H3 histones. All these acyl-nucleosomes contained an azide functionality that allowed quick click labeling with a strained alkyne dye for in-gel fluorescence analysis. Using these acyl-nucleosomes as substrates and click labeling as a detection method, we systematically investigated chromatin deacylation activities of SIRT7, a class III NAD-dependent histone deacylase with roles in aging and cancer biology. Besides confirming the previously reported histone H3K18 deacylation activity, our results revealed that SIRT7 has an astonishingly high activity to catalyze deacylation of H3K36 and is also catalytically active to deacylate H3K37. We further demonstrated that this H3K36 deacylation activity is nucleosome dependent and can be significantly enhanced when appending the acyl-nucleosome substrate with a short double-stranded DNA that mimics the bridging DNA between nucleosomes in native chromatin. By overexpressing SIRT7 in human cells, we verified that SIRT7 natively removes acetylation from histone H3K36. Moreover, SIRT7-deficient cells exhibited H3K36 hyperacetylation in whole cell extracts, at rDNA sequences in nucleoli, and at select SIRT7 target loci, demonstrating the physiologic importance of SIRT7 in determining endogenous H3K36 acetylation levels. H3K36 acetylation has been detected at active gene promoters, but little is understood about its regulation and functions. Our findings establish H3K36 as a physiologic substrate of SIRT7 and implicate this modification in potential SIRT7 pathways in heterochromatin silencing and genomic stability.
利用工程化的吡咯赖氨酸 tRNA 合成酶突变体和 tRNA,我们通过琥珀终止密码子在大肠杆菌中对 N-(7-叠氮庚酰基)-l-赖氨酸(AzHeK)进行了遗传编码,用于表达许多含有 AzHeK 的组蛋白 H3 蛋白。我们从这些重组酰基化 H3 组蛋白体外组装了酰基核小体。所有这些酰基核小体都含有叠氮功能,允许与张力炔烃染料快速点击标记,用于凝胶内荧光分析。我们使用这些酰基核小体作为底物,点击标记作为检测方法,系统地研究了 SIRT7 的染色质去酰化活性。SIRT7 是一种 NAD 依赖性组蛋白去乙酰化酶,属于 III 类,在衰老和癌症生物学中发挥作用。除了证实先前报道的组蛋白 H3K18 去乙酰化活性外,我们的结果还表明,SIRT7 具有惊人的高活性,可催化 H3K36 的去乙酰化,并且还具有催化 H3K37 去乙酰化的活性。我们进一步证明,这种 H3K36 去乙酰化活性依赖于核小体,并且当在酰基核小体底物上添加模仿天然染色质中核小体之间的桥接 DNA 的短双链 DNA 时,可以显著增强该活性。通过在人细胞中过表达 SIRT7,我们验证了 SIRT7 天然从组蛋白 H3K36 上去除乙酰基。此外,在整个细胞提取物中、核仁中的 rDNA 序列中和选定的 SIRT7 靶基因座中,SIRT7 缺陷细胞表现出 H3K36 过度乙酰化,表明 SIRT7 在确定内源性 H3K36 乙酰化水平方面的生理重要性。H3K36 乙酰化已在活性基因启动子中检测到,但对其调控和功能知之甚少。我们的发现将 H3K36 确立为 SIRT7 的生理底物,并暗示该修饰参与了异染色质沉默和基因组稳定性的潜在 SIRT7 途径。