Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands.
Biological Physics Theory Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1501-1510. doi: 10.1073/pnas.1813476116. Epub 2019 Jan 17.
The dynamics of complex systems generally include high-dimensional, nonstationary, and nonlinear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties, we detail an approach based on local linear models within windows determined adaptively from data. While the dynamics within each window are simple, consisting of exponential decay, growth, and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a likelihood-based hierarchical clustering, and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode , our approach identifies fine-grained behavioral states and model dynamics which fluctuate about an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. We analyze whole-brain imaging in and show that global brain dynamics is damped away from the instability boundary by a decrease in oxygen concentration. We provide additional evidence for such near-critical dynamics from the analysis of electrocorticography in monkey and the imaging of a neural population from mouse visual cortex at single-cell resolution.
复杂系统的动力学通常包括高维、非平稳和非线性行为,所有这些都对定量理解构成了根本性的挑战。为了解决这些困难,我们详细介绍了一种基于局部线性模型的方法,该方法在由数据自适应确定的窗口内使用。虽然每个窗口内的动力学很简单,由指数衰减、增长和振荡组成,但所有窗口的局部参数的集合提供了对整个时间序列的原则性描述。为了探索由此产生的模型空间,我们开发了一种基于似然的层次聚类,并研究了线性动力学的特征值。我们通过处于稳定螺旋动力学和标准混沌状态的 Lorenz 系统展示了我们的分析。将我们的方法应用于线虫的姿势动力学,我们可以识别出关于不稳定性边界波动的细粒度行为状态和模型动力学,并详细描述了从向前爬行到向后爬行的转变中的分岔。我们分析了 中的全脑成像,并表明通过降低氧浓度,全局大脑动力学远离不稳定性边界而被阻尼。我们从猴子的皮层电图分析和老鼠视觉皮层的单个神经元群体的成像中提供了这种近临界动力学的其他证据。