Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Curr Biol. 2019 Feb 4;29(3):412-425.e3. doi: 10.1016/j.cub.2018.12.012. Epub 2019 Jan 17.
Serial electron microscopic analysis shows that the Drosophila brain at hatching possesses a large fraction of developmentally arrested neurons with a small soma, heterochromatin-rich nucleus, and unbranched axon lacking synapses. We digitally reconstructed all 802 "small undifferentiated" (SU) neurons and assigned them to the known brain lineages. By establishing the coordinates and reconstructing trajectories of the SU neuron tracts, we provide a framework of landmarks for the ongoing analyses of the L1 brain circuitry. To address the later fate of SU neurons, we focused on the 54 SU neurons belonging to the DM1-DM4 lineages, which generate all columnar neurons of the central complex. Regarding their topologically ordered projection pattern, these neurons form an embryonic nucleus of the fan-shaped body ("FB pioneers"). Fan-shaped body pioneers survive into the adult stage, where they develop into a specific class of bi-columnar elements, the pontine neurons. Later born, unicolumnar DM1-DM4 neurons fasciculate with the fan-shaped body pioneers. Selective ablation of the fan-shaped body pioneers altered the architecture of the larval fan-shaped body primordium but did not result in gross abnormalities of the trajectories of unicolumnar neurons, indicating that axonal pathfinding of the two systems may be controlled independently. Our comprehensive spatial and developmental analysis of the SU neurons adds to our understanding of the establishment of neuronal circuitry.
连续电子显微镜分析表明,孵化时的果蝇大脑拥有大量发育停滞的神经元,这些神经元的胞体较小,核内富含异染色质,轴突未分支且缺乏突触。我们对所有 802 个“小未分化”(SU)神经元进行了数字重建,并将其分配到已知的脑谱系中。通过确定 SU 神经元束的坐标并重建其轨迹,我们为正在进行的 L1 脑回路分析提供了一个地标框架。为了解决 SU 神经元的后期命运问题,我们重点关注了属于 DM1-DM4 谱系的 54 个 SU 神经元,这些神经元产生了中央复合体的所有柱状神经元。根据它们拓扑有序的投射模式,这些神经元形成了扇形体的胚胎核(“扇形体先驱”)。扇形体先驱在成年期存活下来,在那里它们发育成特定的双柱形神经元,即桥脑神经元。后来出生的单柱形 DM1-DM4 神经元与扇形体先驱束集在一起。选择性地破坏扇形体先驱会改变幼虫扇形体原基的结构,但不会导致单柱形神经元轨迹的明显异常,这表明这两个系统的轴突寻路可能是独立控制的。我们对 SU 神经元进行的全面空间和发育分析,增加了我们对神经元回路建立的理解。