Suppr超能文献

基于特征融合与模型拟合的三维超声图像导管分割

Catheter segmentation in three-dimensional ultrasound images by feature fusion and model fitting.

作者信息

Yang Hongxu, Shan Caifeng, Pourtaherian Arash, Kolen Alexander F, de With Peter H N

机构信息

Eindhoven University of Technology, VCA Research Group, Eindhoven, The Netherlands.

Philips Research, In-Body Systems, Eindhoven, The Netherlands.

出版信息

J Med Imaging (Bellingham). 2019 Jan;6(1):015001. doi: 10.1117/1.JMI.6.1.015001. Epub 2019 Jan 14.

Abstract

Ultrasound (US) has been increasingly used during interventions, such as cardiac catheterization. To accurately identify the catheter inside US images, extra training for physicians and sonographers is needed. As a consequence, automated segmentation of the catheter in US images and optimized presentation viewing to the physician can be beneficial to accelerate the efficiency and safety of interventions and improve their outcome. For cardiac catheterization, a three-dimensional (3-D) US image is potentially attractive because of no radiation modality and richer spatial information. However, due to a limited spatial resolution of 3-D cardiac US and complex anatomical structures inside the heart, image-based catheter segmentation is challenging. We propose a cardiac catheter segmentation method in 3-D US data through image processing techniques. Our method first applies a voxel-based classification through newly designed multiscale and multidefinition features, which provide a robust catheter voxel segmentation in 3-D US. Second, a modified catheter model fitting is applied to segment the curved catheter in 3-D US images. The proposed method is validated with extensive experiments, using different , , and datasets. The proposed method can segment the catheter within an average tip-point error that is smaller than the catheter diameter (1.9 mm) in the volumetric images. Based on automated catheter segmentation and combined with optimal viewing, physicians do not have to interpret US images and can focus on the procedure itself to improve the quality of cardiac intervention.

摘要

超声(US)在诸如心导管插入术等介入操作中使用得越来越频繁。为了在超声图像中准确识别导管,医生和超声技师需要额外的培训。因此,对超声图像中的导管进行自动分割并为医生优化图像呈现以供查看,可能有助于提高介入操作的效率和安全性,并改善其结果。对于心导管插入术而言,三维(3-D)超声图像因无辐射且空间信息更丰富而具有潜在吸引力。然而,由于三维心脏超声的空间分辨率有限以及心脏内部解剖结构复杂,基于图像的导管分割具有挑战性。我们通过图像处理技术提出了一种在三维超声数据中进行心脏导管分割的方法。我们的方法首先通过新设计的多尺度和多定义特征应用基于体素的分类,这在三维超声中提供了稳健的导管体素分割。其次,应用改进的导管模型拟合来分割三维超声图像中的弯曲导管。所提出的方法通过使用不同的、、和数据集进行了广泛实验验证。所提出的方法在容积图像中能够以平均尖端点误差小于导管直径(1.9毫米)的精度分割导管。基于自动导管分割并结合最佳查看方式,医生无需解读超声图像,能够专注于操作本身,从而提高心脏介入的质量。

相似文献

4
Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.三维经食管超声心动图图像中多个心脏腔室的分割
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jun;62(6):1179-89. doi: 10.1109/TUFFC.2013.006228.
7
Kidney Segmentation in 3-D Ultrasound Images Using a Fast Phase-Based Approach.基于快速相位法的三维超声图像肾脏分割
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1521-1531. doi: 10.1109/TUFFC.2020.3039334. Epub 2021 Apr 26.

本文引用的文献

1
Medical Instrument Detection in 3-Dimensional Ultrasound Data Volumes.三维超声数据体中的医疗器械检测。
IEEE Trans Med Imaging. 2017 Aug;36(8):1664-1675. doi: 10.1109/TMI.2017.2692302. Epub 2017 Apr 7.
3
Line filtering for surgical tool localization in 3D ultrasound images.三维超声图像中手术工具定位的线滤波。
Comput Biol Med. 2013 Dec;43(12):2036-45. doi: 10.1016/j.compbiomed.2013.09.020. Epub 2013 Oct 10.
5
Computer-aided detection of cancer in automated 3-D breast ultrasound.计算机辅助检测自动三维乳腺超声中的癌症。
IEEE Trans Med Imaging. 2013 Sep;32(9):1698-706. doi: 10.1109/TMI.2013.2263389. Epub 2013 May 16.
10
Statistical segmentation of surgical instruments in 3-D ultrasound images.三维超声图像中手术器械的统计分割
Ultrasound Med Biol. 2007 Sep;33(9):1428-37. doi: 10.1016/j.ultrasmedbio.2007.03.003. Epub 2007 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验