Suppr超能文献

可复制的灰质模式指数表明精神分裂症和双相情感障碍的大脑结构存在多变量、全局改变。

Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder.

机构信息

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

出版信息

Transl Psychiatry. 2019 Jan 17;9(1):12. doi: 10.1038/s41398-018-0225-4.

Abstract

Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/ hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.

摘要

精神分裂症是一种严重的精神障碍,其特征是大脑结构和功能存在许多细微变化。机器学习允许探索将结构和功能磁共振成像 (MRI) 测量值相结合用于诊断应用的效用,但这种方法受到样本量限制和缺乏差异诊断数据的阻碍。在这里,我们进行了一项多中心机器学习分析,以探索 2668 名精神分裂症、双相情感障碍或注意缺陷/多动障碍患者和健康对照者的 T1 MRI 数据的大脑结构模式。我们发现精神分裂症存在可重复的结构参数变化,其分类准确率高达 76%,并可通过与 ADHD 的区分来提供诊断,尽管它缺乏对双相情感障碍的特异性。观察到的变化在很大程度上反映了灰质分布的改变,可以通过几个大脑结构参数的组合来表示。这项多中心机器学习研究确定了一个可重复区分精神分裂症患者和对照组的大脑结构特征,但缺乏对双相情感障碍的特异性。虽然这目前限制了所识别特征的临床实用性,但本研究强调了潜在的改变反映了这些疾病的实质性的全脑灰质变化,反映了这些疾病的生物学相似性,并为未来探索精神病人的大脑结构改变提供了路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a350/6341112/68d2f849bf13/41398_2018_225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验