Suppr超能文献

使用循环点过程网络学习时间序列相关事件序列

Learning Time Series Associated Event Sequences With Recurrent Point Process Networks.

作者信息

Xiao Shuai, Yan Junchi, Farajtabar Mehrdad, Song Le, Yang Xiaokang, Zha Hongyuan

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):3124-3136. doi: 10.1109/TNNLS.2018.2889776. Epub 2019 Jan 23.

Abstract

Real-world sequential data are often generated based on complicated and latent mechanisms, which can be formulated as event sequences occurring in the continuous time domain. In addition, continuous signals may often be associated with event sequences and be formulated as time series with fixed time lags. Traditionally, event sequences are often modeled by parametric temporal point processes, which use explicitly defined conditional intensity functions to quantify the occurrence rates of events. However, these parametric models often merely take one-side information from event sequences into account while ignoring the information from concurrent time series, and their intensity functions are usually designed for specific tasks dependent on prior knowledge. To tackle the above-mentioned problems, we propose a model called recurrent point process networks which instantiates temporal point process models with temporal recurrent neural networks (RNNs). In particular, the intensity functions of the proposed model are modeled by two RNNs: one temporal RNN capturing the relationships among events and the other RNN updating intensity functions based on time series. Furthermore, an attention mechanism is introduced, which uncovers influence strengths among events with good interpretability. Focusing on challenging tasks such as temporal event prediction and underlying relational network mining, we demonstrate the superiority of our model on both synthetic and real-world data.

摘要

现实世界中的序列数据通常是基于复杂的潜在机制生成的,这些机制可以被表述为在连续时间域中发生的事件序列。此外,连续信号通常可能与事件序列相关联,并被表述为具有固定时间滞后的时间序列。传统上,事件序列通常由参数化时间点过程建模,该过程使用明确定义的条件强度函数来量化事件的发生率。然而,这些参数化模型通常只考虑事件序列的单方面信息,而忽略了来自并发时间序列的信息,并且它们的强度函数通常是为依赖先验知识的特定任务而设计的。为了解决上述问题,我们提出了一种称为循环点过程网络的模型,该模型使用时间循环神经网络(RNN)实例化时间点过程模型。具体而言,所提出模型的强度函数由两个RNN建模:一个时间RNN捕捉事件之间的关系,另一个RNN基于时间序列更新强度函数。此外,还引入了一种注意力机制,该机制以良好的可解释性揭示事件之间的影响强度。针对诸如时间事件预测和潜在关系网络挖掘等具有挑战性的任务,我们在合成数据和现实世界数据上都证明了我们模型的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验