Suppr超能文献

原因:使用归因方法从事件序列中学习格兰杰因果关系。

CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods.

作者信息

Zhang Wei, Panum Thomas Kobber, Jha Somesh, Chalasani Prasad, Page David

机构信息

Computer Scineces Department, University of Wisconsin-Madison, Madison, WI, USA.

Department of Electronic Systems, Aalborg University, Aalborg, Denmark.

出版信息

Proc Mach Learn Res. 2020 Jul;119:11235-11245.

Abstract

We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.

摘要

我们研究了从异步、相互依赖的多类型事件序列中学习事件类型之间格兰杰因果关系的问题。现有工作要么模型灵活性有限,要么模型可解释性差,因此无法在具有不同事件相互依赖性的各种事件序列中揭示格兰杰因果关系。为了解决这些弱点,我们提出了CAUSE(基于事件序列属性的因果关系),这是一个用于所研究任务的新颖框架。CAUSE的关键思想是首先通过拟合神经点过程隐式地捕捉潜在的事件相互依赖性,然后使用公理归因方法从该过程中提取格兰杰因果关系统计量。在多个充满不同事件相互依赖性的数据集上,我们证明CAUSE在正确推断跨类型格兰杰因果关系方面比一系列现有方法具有更优的性能。

相似文献

2
Spike-field Granger causality for hybrid neural data analysis.用于混合神经数据分析的尖峰-场格兰杰因果关系。
J Neurophysiol. 2019 Aug 1;122(2):809-822. doi: 10.1152/jn.00246.2019. Epub 2019 Jun 26.
4
Granger causality for state-space models.状态空间模型的格兰杰因果关系。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):040101. doi: 10.1103/PhysRevE.91.040101. Epub 2015 Apr 23.
5
Neural Granger Causality.神经格兰杰因果关系。
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4267-4279. doi: 10.1109/TPAMI.2021.3065601. Epub 2022 Jul 1.
6
A copula approach to assessing Granger causality.一种用于评估格兰杰因果关系的Copula方法。
Neuroimage. 2014 Oct 15;100:125-34. doi: 10.1016/j.neuroimage.2014.06.013. Epub 2014 Jun 17.
7
Visual Causality Analysis of Event Sequence Data.事件序列数据的可视化因果分析。
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1343-1352. doi: 10.1109/TVCG.2020.3030465. Epub 2021 Jan 28.
9
Prophetic Granger Causality to infer gene regulatory networks.用于推断基因调控网络的预测性格兰杰因果关系
PLoS One. 2017 Dec 6;12(12):e0170340. doi: 10.1371/journal.pone.0170340. eCollection 2017.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验