Suppr超能文献

利用CRISPR/Cas9技术快速构建长链非编码RNA基因敲除小鼠

Rapid Generation of Long Noncoding RNA Knockout Mice Using CRISPR/Cas9 Technology.

作者信息

Hansmeier Nils R, Widdershooven Pia J M, Khani Sajjad, Kornfeld Jan-Wilhelm

机构信息

Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany.

Cologne Cluster of Excellence: Cellular Stress Responses in Ageing-associated Diseases, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.

出版信息

Noncoding RNA. 2019 Jan 23;5(1):12. doi: 10.3390/ncrna5010012.

Abstract

In recent years, long noncoding RNAs (lncRNAs) have emerged as multifaceted regulators of gene expression, controlling key developmental and disease pathogenesis processes. However, due to the paucity of lncRNA loss-of-function mouse models, key questions regarding the involvement of lncRNAs in organism homeostasis and (patho)-physiology remain difficult to address experimentally in vivo. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 platform provides a powerful genome-editing tool and has been successfully applied across model organisms to facilitate targeted genetic mutations, including , , and . However, just a few lncRNA-deficient mouse lines have been created using CRISPR/Cas9-mediated genome engineering, presumably due to the need for lncRNA-specific gene targeting strategies considering the absence of open-reading frames in these loci. Here, we describe a step-wise procedure for the generation and validation of lncRNA loss-of-function mouse models using CRISPR/Cas9-mediated genome engineering. In a proof-of-principle approach, we generated mice deficient for the liver-enriched lncRNA , which we found downregulated during development of metabolic disease and induced during the feeding/fasting transition. Further, we discuss guidelines for the selection of lncRNA targets and provide protocols for in vitro single guide RNA (sgRNA) validation, assessment of in vivo gene-targeting efficiency and knockout confirmation. The procedure from target selection to validation of lncRNA knockout mouse lines can be completed in 18⁻20 weeks, of which <10 days hands-on working time is required.

摘要

近年来,长链非编码RNA(lncRNAs)已成为基因表达的多面调节因子,控制着关键的发育和疾病发病机制过程。然而,由于lncRNA功能缺失小鼠模型的匮乏,关于lncRNAs在机体稳态和(病理)生理学中的作用的关键问题在体内实验中仍难以解决。成簇规律间隔短回文重复序列(CRISPR)/Cas9平台提供了一种强大的基因组编辑工具,并已成功应用于多种模式生物,以促进靶向基因突变,包括[具体物种1]、[具体物种2]、[具体物种3]和[具体物种4]。然而,使用CRISPR/Cas9介导的基因组工程仅创建了少数lncRNA缺陷小鼠品系,这可能是由于考虑到这些基因座中不存在开放阅读框,需要lncRNA特异性基因靶向策略。在这里,我们描述了一种使用CRISPR/Cas9介导的基因组工程生成和验证lncRNA功能缺失小鼠模型的逐步程序。在一个原理验证方法中,我们生成了肝脏富集lncRNA[具体lncRNA名称]缺陷的小鼠,我们发现该lncRNA在代谢疾病发展过程中下调,并在进食/禁食转换期间诱导表达。此外,我们讨论了lncRNA靶点选择的指导原则,并提供了体外单向导RNA(sgRNA)验证、体内基因靶向效率评估和敲除确认的方案。从靶点选择到lncRNA敲除小鼠品系验证的程序可以在18至20周内完成,其中实际操作时间不到10天。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6740/6468733/5d0b4dda8f68/ncrna-05-00012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验