Suppr超能文献

CRISPR 与小鼠长非编码 RNA 功能的关联:一种实用方法。

CRISPR links to long noncoding RNA function in mice: A practical approach.

机构信息

Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America.

Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States of America.

出版信息

Vascul Pharmacol. 2019 Mar;114:1-12. doi: 10.1016/j.vph.2019.02.004. Epub 2019 Feb 27.

Abstract

Next generation sequencing has uncovered a trove of short noncoding RNAs (e.g., microRNAs) and long noncoding RNAs (lncRNAs) that act as molecular rheostats in the control of diverse homeostatic processes. Meanwhile, the tsunamic emergence of clustered regularly interspaced short palindromic repeats (CRISPR) editing has transformed our influence over all DNA-carrying entities, heralding global CRISPRization. This is evident in biomedical research where the ease and low-cost of CRISPR editing has made it the preferred method of manipulating the mouse genome, facilitating rapid discovery of genome function in an in vivo context. Here, CRISPR genome editing components are updated for elucidating lncRNA function in mice. Various strategies are highlighted for understanding the function of lncRNAs residing in intergenic sequence space, as host genes that harbor microRNAs or other genes, and as natural antisense, overlapping or intronic genes. Also discussed is CRISPR editing of mice carrying human lncRNAs as well as the editing of competing endogenous RNAs. The information described herein should assist labs in the rigorous design of experiments that interrogate lncRNA function in mice where complex disease processes can be modeled thus accelerating translational discovery.

摘要

下一代测序技术揭示了大量短非编码 RNA(例如 microRNAs)和长非编码 RNA(lncRNAs),它们作为分子变阻器,控制着多种体内平衡过程。与此同时,成簇规律间隔短回文重复序列(CRISPR)编辑的海啸式出现改变了我们对所有携带 DNA 的实体的影响,预示着全球 CRISPR 化。这在生物医学研究中显而易见,CRISPR 编辑的简便性和低成本使其成为操纵小鼠基因组的首选方法,促进了在体内环境中快速发现基因组功能。在这里,CRISPR 基因组编辑组件被更新,以阐明小鼠中的 lncRNA 功能。强调了各种策略,用于了解位于基因间序列空间、作为 miRNA 或其他基因的宿主基因、以及作为天然反义、重叠或内含子基因的 lncRNA 的功能。还讨论了携带人类 lncRNAs 的小鼠的 CRISPR 编辑以及竞争内源性 RNA 的编辑。本文所述的信息应有助于实验室在严格设计实验中,探究小鼠中的 lncRNA 功能,从而可以模拟复杂的疾病过程,加速转化发现。

相似文献

1
CRISPR links to long noncoding RNA function in mice: A practical approach.
Vascul Pharmacol. 2019 Mar;114:1-12. doi: 10.1016/j.vph.2019.02.004. Epub 2019 Feb 27.
2
Tuning the Expression of Long Noncoding RNA Loci with CRISPR Interference.
Methods Mol Biol. 2020;2161:1-16. doi: 10.1007/978-1-0716-0680-3_1.
3
Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening.
Cancer Cell. 2019 Apr 15;35(4):545-557. doi: 10.1016/j.ccell.2019.01.019. Epub 2019 Feb 28.
4
Shooting the messenger: RNA-targetting CRISPR-Cas systems.
Biosci Rep. 2018 Jun 21;38(3). doi: 10.1042/BSR20170788. Print 2018 Jun 29.
5
CRISPR-Cas systems: ushering in the new genome editing era.
Bioengineered. 2018;9(1):214-221. doi: 10.1080/21655979.2018.1470720.
6
CRISPR-Cas9 in genome editing: Its function and medical applications.
J Cell Physiol. 2019 May;234(5):5751-5761. doi: 10.1002/jcp.27476. Epub 2018 Oct 26.
7
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas Advancement in Molecular Diagnostics and Signal Readout Approaches.
J Mol Diagn. 2021 Nov;23(11):1433-1442. doi: 10.1016/j.jmoldx.2021.07.025. Epub 2021 Aug 25.
8
CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
Cardiovasc Res. 2020 Apr 1;116(5):894-907. doi: 10.1093/cvr/cvz250.
9
Genome editing using CRISPR, CAST, and Fanzor systems.
Mol Cells. 2024 Jul;47(7):100086. doi: 10.1016/j.mocell.2024.100086. Epub 2024 Jun 21.
10
Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
Mol Ther. 2020 Jan 8;28(1):29-41. doi: 10.1016/j.ymthe.2019.09.006. Epub 2019 Sep 12.

引用本文的文献

1
Functional knockout of long non-coding RNAs with genome editing.
Front Genet. 2023 Aug 29;14:1242129. doi: 10.3389/fgene.2023.1242129. eCollection 2023.
2
Of mice and human-specific long noncoding RNAs.
Mamm Genome. 2022 Jun;33(2):281-292. doi: 10.1007/s00335-022-09943-2. Epub 2022 Feb 1.
3
Designing and generating a mouse model: frequently asked questions.
J Biomed Res. 2021 Mar 26;35(2):76-90. doi: 10.7555/JBR.35.20200197.
4
Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease.
Front Pharmacol. 2021 Jan 26;11:583528. doi: 10.3389/fphar.2020.583528. eCollection 2020.
5
Transcriptome analysis of mouse aortae reveals multiple novel pathways regulated by aging.
Aging (Albany NY). 2020 Aug 15;12(15):15603-15623. doi: 10.18632/aging.103652.

本文引用的文献

1
PUMILIO hyperactivity drives premature aging of -deficient mice.
Elife. 2019 Feb 8;8:e42650. doi: 10.7554/eLife.42650.
2
Simultaneous targeting of linked loci in mouse embryos using base editing.
Sci Rep. 2019 Feb 7;9(1):1662. doi: 10.1038/s41598-018-33533-5.
3
CRISPR babies: a view from the centre of the storm.
Development. 2019 Feb 6;146(3):dev175778. doi: 10.1242/dev.175778.
4
Promoters to Study Vascular Smooth Muscle.
Arterioscler Thromb Vasc Biol. 2019 Apr;39(4):603-612. doi: 10.1161/ATVBAHA.119.312449.
5
CasX enzymes comprise a distinct family of RNA-guided genome editors.
Nature. 2019 Feb;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub 2019 Feb 4.
6
sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
Cell Rep. 2019 Jan 29;26(5):1098-1103.e3. doi: 10.1016/j.celrep.2019.01.024.
7
Ethics of Human Genome Editing.
Annu Rev Med. 2019 Jan 27;70:289-305. doi: 10.1146/annurev-med-112717-094629.
8
Rapid Generation of Long Noncoding RNA Knockout Mice Using CRISPR/Cas9 Technology.
Noncoding RNA. 2019 Jan 23;5(1):12. doi: 10.3390/ncrna5010012.
9
Engineering of CRISPR-Cas12b for human genome editing.
Nat Commun. 2019 Jan 22;10(1):212. doi: 10.1038/s41467-018-08224-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验