Suppr超能文献

用于糖尿病视网膜病变自动诊断的深度学习算法的开发

Development of a Deep Learning Algorithm for Automatic Diagnosis of Diabetic Retinopathy.

作者信息

Raju Manoj, Pagidimarri Venkatesh, Barreto Ryan, Kadam Amrit, Kasivajjala Vamsichandra, Aswath Arun

机构信息

Enlightiks Business Solutions Private Limited - a Practo Company, Bangalore, Karnataka, India.

出版信息

Stud Health Technol Inform. 2017;245:559-563.

Abstract

This paper mainly focuses on the deep learning application in classifying the stage of diabetic retinopathy and detecting the laterality of the eye using funduscopic images. Diabetic retinopathy is a chronic, progressive, sight-threatening disease of the retinal blood vessels. Ophthalmologists diagnose diabetic retinopathy through early funduscopic screening. Normally, there is a time delay in reporting and intervention, apart from the financial cost and risk of blindness associated with it. Using a convolutional neural network based approach for automatic diagnosis of diabetic retinopathy, we trained the prediction network on the publicly available Kaggle dataset. Approximately 35,000 images were used to train the network, which observed a sensitivity of 80.28% and a specificity of 92.29% on the validation dataset of ~53,000 images. Using 8,810 images, the network was trained for detecting the laterality of the eye and observed an accuracy of 93.28% on the validation set of 8,816 images.

摘要

本文主要聚焦于深度学习在利用眼底图像对糖尿病视网膜病变阶段进行分类以及检测眼睛的左右侧性方面的应用。糖尿病视网膜病变是一种影响视网膜血管的慢性、进行性、威胁视力的疾病。眼科医生通过早期眼底筛查来诊断糖尿病视网膜病变。通常,除了与之相关的经济成本和失明风险外,报告和干预存在时间延迟。我们使用基于卷积神经网络的方法对糖尿病视网膜病变进行自动诊断,在公开可用的Kaggle数据集上训练预测网络。大约35000张图像用于训练该网络,在约53000张图像的验证数据集上,其灵敏度为80.28%,特异性为92.29%。使用8810张图像对网络进行训练以检测眼睛的左右侧性,在8816张图像的验证集上观察到准确率为93.28%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验