Eliaz Noam
Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
Materials (Basel). 2019 Jan 28;12(3):407. doi: 10.3390/ma12030407.
Metallic biomaterials are used in medical devices in humans more than any other family of materials. The corrosion resistance of an implant material affects its functionality and durability and is a prime factor governing biocompatibility. The fundamental paradigm of metallic biomaterials, except biodegradable metals, has been "the more corrosion resistant, the more biocompatible." The body environment is harsh and raises several challenges with respect to corrosion control. In this invited review paper, the body environment is analysed in detail and the possible effects of the corrosion of different biomaterials on biocompatibility are discussed. Then, the kinetics of corrosion, passivity, its breakdown and regeneration in vivo are conferred. Next, the mostly used metallic biomaterials and their corrosion performance are reviewed. These biomaterials include stainless steels, cobalt-chromium alloys, titanium and its alloys, Nitinol shape memory alloy, dental amalgams, gold, metallic glasses and biodegradable metals. Then, the principles of implant failure, retrieval and failure analysis are highlighted, followed by description of the most common corrosion processes in vivo. Finally, approaches to control the corrosion of metallic biomaterials are highlighted.
金属生物材料在人体医疗器械中的应用比任何其他材料家族都更为广泛。植入材料的耐腐蚀性会影响其功能和耐用性,并且是决定生物相容性的一个主要因素。除了可生物降解金属外,金属生物材料的基本范式一直是“耐腐蚀性越强,生物相容性越好”。人体环境十分恶劣,在腐蚀控制方面提出了若干挑战。在这篇特邀综述论文中,详细分析了人体环境,并讨论了不同生物材料的腐蚀对生物相容性可能产生的影响。然后,阐述了体内腐蚀、钝性、其破坏和再生的动力学。接下来,综述了最常用的金属生物材料及其腐蚀性能。这些生物材料包括不锈钢、钴铬合金、钛及其合金、镍钛诺形状记忆合金、牙科汞合金、金、金属玻璃和可生物降解金属。然后,强调了植入物失效、回收和失效分析的原则,随后描述了体内最常见的腐蚀过程。最后,重点介绍了控制金属生物材料腐蚀的方法。