Tharayil Joseph James, Blanco Alonso Jorge, Farcito Silvia, Lloyd Bryn, Romani Armando, Boci Elvis, Cassara Antonino, Schürmann Felix, Neufeld Esra, Kuster Niels, Reimann Michael
Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Campus Biotech, Geneva, Switzerland.
Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.
PLoS Comput Biol. 2025 May 23;21(5):e1013023. doi: 10.1371/journal.pcbi.1013023. eCollection 2025 May.
As the size and complexity of network simulations accessible to computational neuroscience grows, new avenues open for research into extracellularly recorded electric signals. Biophysically detailed simulations permit the identification of the biological origins of the different components of recorded signals, the evaluation of signal sensitivity to different anatomical, physiological, and geometric factors, and selection of recording parameters to maximize the signal information content. Simultaneously, virtual extracellular signals produced by these networks may become important metrics for neuro-simulation validation. To enable efficient calculation of extracellular signals from large neural network simulations, we have developed BlueRecording, a pipeline consisting of standalone Python code, along with extensions to the Neurodamus simulation control application, the CoreNEURON computation engine, and the SONATA data format, to permit online calculation of such signals. In particular, we implement a general form of the reciprocity theorem, which is capable of handling non-dipolar current sources, such as may be found in long axons and recordings close to the current source, as well as complex tissue anatomy, dielectric heterogeneity, and electrode geometries. To our knowledge, this is the first application of this generalized (i.e., non-dipolar) reciprocity-based approach to simulate EEG recordings. We use these tools to calculate extracellular signals from an in silico model of the rat somatosensory cortex and hippocampus and to study signal contribution differences between regions and cell types.
随着计算神经科学可进行的网络模拟规模和复杂性不断增加,细胞外记录电信号的研究开辟了新途径。生物物理细节丰富的模拟有助于识别记录信号不同成分的生物学起源,评估信号对不同解剖、生理和几何因素的敏感性,并选择记录参数以最大化信号信息含量。同时,这些网络产生的虚拟细胞外信号可能成为神经模拟验证的重要指标。为了能够从大型神经网络模拟中高效计算细胞外信号,我们开发了BlueRecording,这是一个由独立Python代码组成的管道,以及对Neurodamus模拟控制应用程序、CoreNEURON计算引擎和SONATA数据格式的扩展,以允许在线计算此类信号。特别是,我们实现了互易定理的一种通用形式,它能够处理非偶极电流源,比如在长轴突以及靠近电流源的记录中可能出现的情况,还能处理复杂的组织结构、介电异质性和电极几何形状。据我们所知,这是这种基于广义(即非偶极)互易性方法首次用于模拟脑电图记录。我们使用这些工具从大鼠体感皮层和海马体的计算机模型中计算细胞外信号,并研究不同区域和细胞类型之间的信号贡献差异。