Suppr超能文献

金属纳米颗粒在癌症治疗中增强放射敏感性的应用面临的挑战和矛盾。

Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy.

机构信息

Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.

Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.

出版信息

Int J Mol Sci. 2019 Jan 30;20(3):588. doi: 10.3390/ijms20030588.

Abstract

From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.

摘要

从放射治疗的早期开始,如何将辐射效果靶向肿瘤,同时尽可能地保护周围组织不受损伤,一直是一个关键问题。一种有前途的方法是通过金属纳米粒子选择性地预先敏化肿瘤细胞。然而,尽管纳米粒子介导的放射性相互作用的“物理学”已经得到了很好的阐述,但由于对导致细胞损伤增强并最终导致细胞死亡的生物学机制的了解有限,其在医学中的实际应用仍然具有挑战性,而且常常令人失望。在本研究中,我们分析了不同纳米粒子材料(铂(Pt)和金(Au))、癌细胞类型(HeLa、U87 和 SKBr3)和低线性能量转移(LET)电离辐射(γ 和 X 射线)剂量(高达 4 Gy)对辐射诱导的 γH2AX+53BP1 焦点的程度、复杂性和可修复性的影响,这些焦点是双链断裂(DSBs)的标志物。首先,我们通过高分辨率免疫荧光共焦显微镜,在空间(三维)固定细胞中孵育和未孵育 Pt 纳米粒子的情况下,在长时间(24 小时)后对细胞核中的焦点存在情况进行了敏感比较。并将数据与我们之前获得的 Au 纳米粒子的数据以及最近发表的大约相同尺寸(2⁻3nm)的钆(Gd)纳米粒子的数据进行了比较。接下来,我们引入了一种新的超分辨率方法——单分子定位显微镜(SMLM)——来研究修复焦点的内部结构。在这些实验中,使用了 10nm 的 Au 纳米粒子,也可以通过 SMLM 进行可视化。总的来说,数据表明不同的纳米粒子可能增强或不增强 DNA 的辐射损伤,因此必须考虑多参数效应,以更好地解释放射增敏作用。基于这些发现,我们讨论了与纳米粒子对细胞的放射增敏作用的有效性和假定机制相关的结论和矛盾。我们还证明了 SMLM 为研究修复焦点的内部结构提供了新的视角,以更好地评估 DNA 损伤模式的潜在差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7599/6387067/9f38e59a2cb0/ijms-20-00588-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验