Division of General Medical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
Department of Occupational Medicine, Danish Ramazzini Centre, Regional Hospital West Jutland, University Research Clinic, Herning, Denmark.
Occup Environ Med. 2019 Jun;76(6):398-406. doi: 10.1136/oemed-2018-105287. Epub 2019 Jan 31.
OBJECTIVES: Job exposure matrices (JEMs) can be constructed from expert-rated assessments, direct measurement and self-reports. This paper describes the construction of a general population JEM based on self-reported physical exposures, its ability to create homogeneous exposure groups (HEG) and the use of different exposure metrics to express job-level estimates. METHODS: The JEM was constructed from physical exposure data obtained from the Cohorte des consultants des Centres d'examens de santé (CONSTANCES). Using data from 35 526 eligible participants, the JEM consisted of 27 physical risk factors from 407 job codes. We determined whether the JEM created HEG by performing non-parametric multivariate analysis of variance (NPMANOVA). We compared three exposure metrics (mean, bias-corrected mean, median) by calculating within-job and between-job variances, and by residual plots between each metric and individual reported exposure. RESULTS: NPMANOVA showed significantly higher between-job than within-job variance among the 27 risk factors (F(253,21964)=61.33, p<0.0001, r=41.1%). The bias-corrected mean produced more favourable HEG as we observed higher between-job variance and more explained variance than either means or medians. When compared with individual reported exposures, the bias-corrected mean led to near-zero mean differences and lower variance than other exposure metrics. CONCLUSIONS: CONSTANCES JEM using self-reported data yielded HEGs, and can thus classify individual participants based on job title. The bias-corrected mean metric may better reflect the shape of the underlying exposure distribution. This JEM opens new possibilities for using unbiased exposure estimates to study the effects of workplace physical exposures on a variety of health conditions within a large general population study.
目的:职业暴露矩阵(JEM)可基于专家评估、直接测量和自我报告构建。本文描述了基于自我报告的物理暴露数据构建一般人群 JEM 的方法,以及使用不同的暴露指标来表达工作场所水平的估计值。
方法:该 JEM 是基于 Cohorte des consultants des Centres d'examens de santé(CONSTANCES)研究中的物理暴露数据构建的。使用来自 35526 名合格参与者的数据,JEM 由 407 个职业代码中的 27 个物理风险因素组成。我们通过执行非参数多元方差分析(NPMANOVA)来确定 JEM 是否创建了同质暴露组(HEG)。我们通过计算工作内和工作间方差,以及每个指标与个体报告暴露之间的残差图,比较了三种暴露指标(均值、偏倚校正均值、中位数)。
结果:NPMANOVA 显示 27 个风险因素的工作间方差明显高于工作内方差(F(253,21964)=61.33,p<0.0001,r=41.1%)。偏倚校正均值产生了更有利的 HEG,因为我们观察到更高的工作间方差和更多的可解释方差,而不是均值或中位数。与个体报告的暴露相比,偏倚校正均值导致接近零的平均差异和比其他暴露指标更低的方差。
结论:使用自我报告数据的 CONSTANCES JEM 产生了 HEG,可以根据工作头衔对个体参与者进行分类。偏倚校正均值指标可能更好地反映潜在暴露分布的形状。该 JEM 为在大型一般人群研究中使用无偏暴露估计值研究工作场所物理暴露对各种健康状况的影响开辟了新的可能性。
Occup Environ Med. 2019-3-20
Scand J Work Environ Health. 2025-3-1
Scand J Work Environ Health. 2023-11-1
Am J Ind Med. 2022-10
Scand J Work Environ Health. 2018-11-13
J Expo Sci Environ Epidemiol. 2017-3-29
Eur J Epidemiol. 2015-12