Kunwar Puskal, Xiong Zheng, Zhu Yin, Li Haiyan, Filip Alex, Soman Pranav
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
Adv Opt Mater. 2019;7(21). doi: 10.1002/adom.201900656. Epub 2019 Aug 7.
Fabrication of multiscale, multi-material three-dimensional (3D) structures at high resolution is difficult using current technologies. This is especially significant when working with hydrated and mechanically weak hydrogel materials. In this work, a new hybrid laser printing (HLP) technology is reported to print complex, multiscale, multimaterial, 3D hydrogel structures with microscale resolution. This technique of fabrication utilizes sequential additive and subtractive modes of material fabrication, that are typically considered as mutually exclusive due to differences in their material processing conditions. Further, compared to current laser writing systems that enforce stringent processing depth limits, HLP is shown to fabricate structures at any depth inside the material. As a proof-of-principle, a Mayan Pyramid with embedded cube-frame is printed using model synthetic polyethylene glycol diacrylate (PEGDA) hydrogel. Printing of ready-to-use open-well chips with embedded microchannels is also demonstrated using PEGDA and gelatin methacrylate (GelMA) hydrogels for potential applications in biomedical sciences. Next, HLP is used in additive and additive modes to print multiscale 3D structures spanning in size from centimeter to micrometers within minutes, which is followed by printing of 3D, multi-material, multiscale structures using this technology. Overall, this work demonstrates that HLP's fabrication versatility can potentially offer a unique opportunity for a range of applications in optics and photonics, biomedical sciences, microfluidics, soft robotics, etc.
利用现有技术难以高分辨率制造多尺度、多材料的三维(3D)结构。在处理水合且机械性能较弱的水凝胶材料时,这一问题尤为突出。在这项工作中,报道了一种新型混合激光打印(HLP)技术,可打印具有微米级分辨率的复杂、多尺度、多材料3D水凝胶结构。这种制造技术利用了材料制造的顺序添加和减法模式,由于其材料加工条件不同,这两种模式通常被认为是相互排斥的。此外,与当前强制实施严格加工深度限制的激光写入系统相比,HLP能够在材料内部的任何深度制造结构。作为原理验证,使用模型合成聚乙二醇二丙烯酸酯(PEGDA)水凝胶打印了带有嵌入式立方框架的玛雅金字塔。还展示了使用PEGDA和甲基丙烯酸明胶(GelMA)水凝胶打印带有嵌入式微通道的即用型开放式芯片,用于生物医学科学的潜在应用。接下来,HLP以添加和减法模式用于在几分钟内打印尺寸从厘米到微米的多尺度3D结构,随后使用该技术打印3D、多材料、多尺度结构。总体而言,这项工作表明HLP的制造多功能性可能为光学和光子学、生物医学科学、微流体、软机器人等一系列应用提供独特机会。