Suppr超能文献

3D、多尺度、多材料水凝胶结构的混合激光打印

Hybrid Laser Printing of 3D, Multiscale, Multimaterial Hydrogel Structures.

作者信息

Kunwar Puskal, Xiong Zheng, Zhu Yin, Li Haiyan, Filip Alex, Soman Pranav

机构信息

Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.

出版信息

Adv Opt Mater. 2019;7(21). doi: 10.1002/adom.201900656. Epub 2019 Aug 7.

Abstract

Fabrication of multiscale, multi-material three-dimensional (3D) structures at high resolution is difficult using current technologies. This is especially significant when working with hydrated and mechanically weak hydrogel materials. In this work, a new hybrid laser printing (HLP) technology is reported to print complex, multiscale, multimaterial, 3D hydrogel structures with microscale resolution. This technique of fabrication utilizes sequential additive and subtractive modes of material fabrication, that are typically considered as mutually exclusive due to differences in their material processing conditions. Further, compared to current laser writing systems that enforce stringent processing depth limits, HLP is shown to fabricate structures at any depth inside the material. As a proof-of-principle, a Mayan Pyramid with embedded cube-frame is printed using model synthetic polyethylene glycol diacrylate (PEGDA) hydrogel. Printing of ready-to-use open-well chips with embedded microchannels is also demonstrated using PEGDA and gelatin methacrylate (GelMA) hydrogels for potential applications in biomedical sciences. Next, HLP is used in additive and additive modes to print multiscale 3D structures spanning in size from centimeter to micrometers within minutes, which is followed by printing of 3D, multi-material, multiscale structures using this technology. Overall, this work demonstrates that HLP's fabrication versatility can potentially offer a unique opportunity for a range of applications in optics and photonics, biomedical sciences, microfluidics, soft robotics, etc.

摘要

利用现有技术难以高分辨率制造多尺度、多材料的三维(3D)结构。在处理水合且机械性能较弱的水凝胶材料时,这一问题尤为突出。在这项工作中,报道了一种新型混合激光打印(HLP)技术,可打印具有微米级分辨率的复杂、多尺度、多材料3D水凝胶结构。这种制造技术利用了材料制造的顺序添加和减法模式,由于其材料加工条件不同,这两种模式通常被认为是相互排斥的。此外,与当前强制实施严格加工深度限制的激光写入系统相比,HLP能够在材料内部的任何深度制造结构。作为原理验证,使用模型合成聚乙二醇二丙烯酸酯(PEGDA)水凝胶打印了带有嵌入式立方框架的玛雅金字塔。还展示了使用PEGDA和甲基丙烯酸明胶(GelMA)水凝胶打印带有嵌入式微通道的即用型开放式芯片,用于生物医学科学的潜在应用。接下来,HLP以添加和减法模式用于在几分钟内打印尺寸从厘米到微米的多尺度3D结构,随后使用该技术打印3D、多材料、多尺度结构。总体而言,这项工作表明HLP的制造多功能性可能为光学和光子学、生物医学科学、微流体、软机器人等一系列应用提供独特机会。

相似文献

2
Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.长纤维嵌入水凝胶 3D 打印用于结构增强。
ACS Biomater Sci Eng. 2022 Jan 10;8(1):303-313. doi: 10.1021/acsbiomaterials.1c00908. Epub 2021 Dec 3.
3
3D Printing of Multimaterial Contact Lenses.3D 打印多材料隐形眼镜。
ACS Biomater Sci Eng. 2023 Jul 10;9(7):4381-4391. doi: 10.1021/acsbiomaterials.3c00175. Epub 2023 Jun 26.
8
Toward Multiscale, Multimaterial 3D Printing.迈向多尺度、多材料3D打印。
Adv Mater. 2024 Aug;36(34):e2314204. doi: 10.1002/adma.202314204. Epub 2024 Jun 4.

引用本文的文献

1
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
3
Lithography-based 3D printing of hydrogels.基于光刻的水凝胶3D打印
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.

本文引用的文献

5
Soft Lithography.软光刻
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
7
Advances in engineering hydrogels.工程水凝胶的进展
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
10
3D-Printed Microfluidics.3D打印微流体技术
Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3862-81. doi: 10.1002/anie.201504382. Epub 2016 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验