Suppr超能文献

Enspara:使用可扩展的数据结构和并行计算对分子集合进行建模。

Enspara: Modeling molecular ensembles with scalable data structures and parallel computing.

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.

出版信息

J Chem Phys. 2019 Jan 28;150(4):044108. doi: 10.1063/1.5063794.

Abstract

Markov state models (MSMs) are quantitative models of protein dynamics that are useful for uncovering the structural fluctuations that proteins undergo, as well as the mechanisms of these conformational changes. Given the enormity of conformational space, there has been ongoing interest in identifying a small number of states that capture the essential features of a protein. Generally, this is achieved by making assumptions about the properties of relevant features-for example, that the most important features are those that change slowly. An alternative strategy is to keep as many degrees of freedom as possible and subsequently learn from the model which of the features are most important. In these larger models, however, traditional approaches quickly become computationally intractable. In this paper, we present enspara, a library for working with MSMs that provides several novel algorithms and specialized data structures that dramatically improve the scalability of traditional MSM methods. This includes ragged arrays for minimizing memory requirements, message passing interface-parallelized implementations of compute-intensive operations, and a flexible framework for model construction and analysis.

摘要

马科夫状态模型(MSMs)是蛋白质动力学的定量模型,可用于揭示蛋白质经历的结构波动以及这些构象变化的机制。鉴于构象空间的巨大,人们一直有兴趣确定少数能够捕获蛋白质基本特征的状态。通常,这是通过对相关特征的属性做出假设来实现的-例如,最重要的特征是那些变化缓慢的特征。另一种策略是保留尽可能多的自由度,然后从模型中学习哪些特征是最重要的。然而,在这些更大的模型中,传统方法很快变得计算上难以处理。在本文中,我们介绍了 enspara,这是一个用于处理 MSM 的库,它提供了几个新颖的算法和专门的数据结构,极大地提高了传统 MSM 方法的可扩展性。这包括用于最小化内存需求的参差不齐数组、计算密集型操作的消息传递接口并行实现,以及用于模型构建和分析的灵活框架。

相似文献

3
FAST Conformational Searches by Balancing Exploration/Exploitation Trade-Offs.通过平衡探索/利用权衡进行快速构象搜索。
J Chem Theory Comput. 2015 Dec 8;11(12):5747-57. doi: 10.1021/acs.jctc.5b00737. Epub 2015 Nov 20.
5
8
Information Bottleneck Approach for Markov Model Construction.信息瓶颈方法在马尔可夫模型构建中的应用。
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.

引用本文的文献

2
Pathogenic Mutations Disrupt Allosteric Control by .致病突变破坏了由……引起的变构调控。
J Phys Chem B. 2025 Aug 7;129(31):7922-7931. doi: 10.1021/acs.jpcb.5c03653. Epub 2025 Jul 29.
3
5
The G protein inhibitor YM-254890 is an allosteric glue.G蛋白抑制剂YM-254890是一种变构胶。
bioRxiv. 2024 Nov 28:2024.11.25.625299. doi: 10.1101/2024.11.25.625299.
9
On Inactivation of the Coronavirus Main Protease.冠状病毒主蛋白酶的失活
J Chem Inf Model. 2024 Mar 11;64(5):1644-1656. doi: 10.1021/acs.jcim.3c01518. Epub 2024 Feb 29.

本文引用的文献

5
Markov State Models: From an Art to a Science.马尔可夫状态模型:从一门艺术到一门科学。
J Am Chem Soc. 2018 Feb 21;140(7):2386-2396. doi: 10.1021/jacs.7b12191. Epub 2018 Feb 2.
8
Kinetics from Replica Exchange Molecular Dynamics Simulations.从复制交换分子动力学模拟中获得的动力学信息。
J Chem Theory Comput. 2017 Aug 8;13(8):3927-3935. doi: 10.1021/acs.jctc.7b00372. Epub 2017 Jul 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验