Unité de Biotechnologie des Algues UR17ES42, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.
Unité de Biotechnologie des Algues UR17ES42, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.
Int J Biol Macromol. 2019 May 15;129:152-161. doi: 10.1016/j.ijbiomac.2019.01.207. Epub 2019 Jan 31.
Optimal conditions for maximal biomass and starch production by the marine red microalgae Porphyridium marinum were investigated. Box-Behnken Design was used to model the effect of light intensity, NaNO concentration and salinity on the growth of microalgae but also on their starch and protein contents. These three factors increased biomass production by 13.6% in optimized conditions. A maximum starch production (140.21 μg·mL), 30.6% higher than that of the control, was attained at a light intensity of 100 μmol photons·m·s, a NaNO concentration of 1 g·L and a NaCl concentration of 20 g·L. FT-IR spectroscopy was used to estimate the biochemical composition (carbohydrate accumulation) of P. marinum and revealed significant changes (P < 0.05) depending on culture conditions. FT-IR analysis highlighted also that the culture conditions leading to highest starch production by P. marinum corresponded to lowest sulfated polysaccharide and protein contents.
优化海洋红微藻紫球藻的最大生物量和淀粉生产的条件。采用 Box-Behnken 设计来模拟光强、NaNO3 浓度和盐度对微藻生长及淀粉和蛋白质含量的影响。在优化条件下,这三个因素使生物量增加了 13.6%。在光强为 100 μmol 光子·m·s、NaNO3 浓度为 1 g·L 和 NaCl 浓度为 20 g·L 的条件下,淀粉产量达到最高(140.21 μg·mL),比对照组高 30.6%。傅里叶变换红外光谱(FT-IR)用于估计紫球藻的生化组成(碳水化合物积累),结果表明其组成随培养条件而发生显著变化(P<0.05)。FT-IR 分析还表明,导致紫球藻淀粉产量最高的培养条件与最低的硫酸多糖和蛋白质含量相对应。