Suppr超能文献

通过主客体相互作用构建的可还原导电水凝胶用于 3D 细胞培养。

Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture.

机构信息

B CUBE Center for Molecular Bioengineering , Technische Universität Dresden , 01307 Dresden , Germany.

Department of Biology, Institute of Botany, Faculty of Science , Technische Universität Dresden , 01062 Dresden , Germany.

出版信息

ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7715-7724. doi: 10.1021/acsami.8b19482. Epub 2019 Feb 15.

Abstract

The study of cells responding to an electroconductive environment is impeded by the lack of a method, which would allow the encapsulation of cells in an extracellular matrix-like 3D electroactive matrix, and more challengingly, permit a simple mechanism to release cells for further characterization. Herein, we report a polysaccharide-based conductive hydrogel system formed via a β-cyclodextrin-adamantane host-guest interaction. Oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of adamantyl-modified sulfated alginate (S-Alg-Ad) results in bio-electroconductive polymer PEDOT:S-Alg-Ad, which can form hydrogel with poly-β-cyclodextrin (Pβ-CD). The PEDOT:S-Alg-Ad/Pβ-CD hydrogels can be tuned on aspects of mechanical and electrical properties, exhibit self-healing feature, and are injectable. Electron microscopy suggested that the difference in stiffness and conductivity is associated with the nacre-like layered nanostructures when different sizes of PEDOT:S-Alg-Ad nanoparticles were used. Myoblast C2C12 cells were encapsulated in the conductive hydrogel and exhibited proliferation rate comparable to that in nonconductive S-Alg-Ad/Pβ-CD hydrogel. The cells could be released from the hydrogels by adding the β-CD monomer. Astonishingly, the conductive hydrogel can dramatically promote myotube-like structure formation, which is not in the non-electroconductive hydrogel. The ability to embed and release cells in an electroconductive environment will open new doors for cell culture and tissue engineering.

摘要

细胞对外界导电环境响应的研究受到限制,因为缺乏一种方法可以将细胞包封在类似于细胞外基质的 3D 电活性基质中,更具挑战性的是,需要一种简单的机制来释放细胞以进行进一步的表征。在此,我们报告了一种基于多糖的导电水凝胶系统,该系统通过β-环糊精-金刚烷主客体相互作用形成。在存在金刚烷基改性硫酸化藻酸盐(S-Alg-Ad)的情况下,氧化聚合 3,4-亚乙基二氧噻吩(EDOT)导致生物导电聚合物 PEDOT:S-Alg-Ad 形成与聚-β-环糊精(Pβ-CD)的水凝胶。PEDOT:S-Alg-Ad/Pβ-CD 水凝胶在机械和电气性能方面可以进行调整,具有自修复特性,并且可注射。电子显微镜表明,当使用不同尺寸的 PEDOT:S-Alg-Ad 纳米颗粒时,力学性能和导电性的差异与珍珠层状层状纳米结构有关。将成肌细胞 C2C12 封装在导电水凝胶中,其增殖速度可与非导电 S-Alg-Ad/Pβ-CD 水凝胶相媲美。通过添加β-CD 单体可以将细胞从水凝胶中释放出来。令人惊讶的是,导电水凝胶可以极大地促进肌管样结构的形成,而在非导电水凝胶中则没有。在导电环境中嵌入和释放细胞的能力将为细胞培养和组织工程开辟新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验