Suppr超能文献

CRISPR 进化与噬菌体在种群瓶颈下的持续存在。

CRISPR evolution and bacteriophage persistence in the context of population bottlenecks.

机构信息

a ESI, Biosciences , University of Exeter , Penryn , UK.

出版信息

RNA Biol. 2019 Apr;16(4):588-594. doi: 10.1080/15476286.2019.1578608. Epub 2019 Feb 17.

Abstract

Population bottlenecks often cause strong reductions in genetic diversity and alter population structure. In the context of host-parasite interactions, bottlenecks could in theory benefit either the host or the pathogen. We predicted that bottlenecking of bacterial populations that evolve CRISPR immunity against bacteriophages (phage) would benefit the pathogen, because CRISPR spacer diversity can rapidly drive phages extinct. To test this, we bottlenecked populations of bacteria and phage, tracking phage persistence and the evolution of bacterial resistance mechanisms. Contrary to our prediction, bottlenecking worked in the advantage of the host. With some possible exceptions, this effect was not caused by CRISPR immunity. This host benefit is consistent with a dilution effect disproportionately affecting phage. This study provides further insight into how bottlenecking influences bacteria-phage dynamics, the role of dilution in bacteria-phage interactions, and the evolution of host immune systems.

摘要

人口瓶颈常常导致遗传多样性的剧烈减少,并改变种群结构。在宿主-寄生虫相互作用的背景下,瓶颈从理论上可能有利于宿主或病原体。我们预测,针对噬菌体(phage)进化出 CRISPR 免疫的细菌种群的瓶颈化将有利于病原体,因为 CRISPR 间隔多样性可以迅速使噬菌体灭绝。为了验证这一点,我们对细菌和噬菌体进行了瓶颈化处理,跟踪噬菌体的持续存在和细菌抗性机制的进化。与我们的预测相反,瓶颈化有利于宿主。除了一些可能的例外,这种效果不是由 CRISPR 免疫引起的。这种宿主优势与不成比例地影响噬菌体的稀释效应一致。这项研究进一步深入了解了瓶颈化如何影响细菌-噬菌体动态、稀释在细菌-噬菌体相互作用中的作用以及宿主免疫系统的进化。

相似文献

3
Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.利用抗 CRISPR 噬菌体的合作行为。
Cell Host Microbe. 2020 Feb 12;27(2):189-198.e6. doi: 10.1016/j.chom.2019.12.004. Epub 2019 Dec 31.
5
Phage-Encoded Anti-CRISPR Defenses.噬菌体编码的抗 CRISPR 防御系统。
Annu Rev Genet. 2018 Nov 23;52:445-464. doi: 10.1146/annurev-genet-120417-031321. Epub 2018 Sep 12.
7
Deciphering and shaping bacterial diversity through CRISPR.通过CRISPR解析和塑造细菌多样性
Curr Opin Microbiol. 2016 Jun;31:101-108. doi: 10.1016/j.mib.2016.03.006. Epub 2016 Apr 2.
8
Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.噬菌体合作抑制 CRISPR-Cas3 和 Cas9 免疫。
Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.

引用本文的文献

1
Bacteria-phage coevolution with a seed bank.细菌-噬菌体共同进化与种子库。
ISME J. 2023 Aug;17(8):1315-1325. doi: 10.1038/s41396-023-01449-2. Epub 2023 Jun 7.
3
Population size impacts host-pathogen coevolution.种群大小影响宿主-病原体协同进化。
Proc Biol Sci. 2021 Dec 22;288(1965):20212269. doi: 10.1098/rspb.2021.2269. Epub 2021 Dec 15.
5
The ecology and evolution of microbial CRISPR-Cas adaptive immune systems.微生物CRISPR-Cas适应性免疫系统的生态学与进化
Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20190101. doi: 10.1098/rstb.2019.0101.

本文引用的文献

1
Leaky resistance and the conditions for the existence of lytic bacteriophage.渗漏抗性和裂解噬菌体存在的条件。
PLoS Biol. 2018 Aug 16;16(8):e2005971. doi: 10.1371/journal.pbio.2005971. eCollection 2018 Aug.
4
Mechanisms and consequences of diversity-generating immune strategies.多样性产生免疫策略的机制和后果。
Nat Rev Immunol. 2017 Nov;17(11):719-728. doi: 10.1038/nri.2017.78. Epub 2017 Aug 7.
5
CRISPR-Cas: Adapting to change.CRISPR-Cas:适应变化。
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aal5056. Epub 2017 Apr 6.
7
Evolutionary Ecology of Prokaryotic Immune Mechanisms.原核生物免疫机制的进化生态学
Microbiol Mol Biol Rev. 2016 Jul 13;80(3):745-63. doi: 10.1128/MMBR.00011-16. Print 2016 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验