Suppr超能文献

大脑网络中的信息整合。

Information integration in large brain networks.

机构信息

Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America.

出版信息

PLoS Comput Biol. 2019 Feb 7;15(2):e1006807. doi: 10.1371/journal.pcbi.1006807. eCollection 2019 Feb.

Abstract

An outstanding problem in neuroscience is to understand how information is integrated across the many modules of the brain. While classic information-theoretic measures have transformed our understanding of feedforward information processing in the brain's sensory periphery, comparable measures for information flow in the massively recurrent networks of the rest of the brain have been lacking. To address this, recent work in information theory has produced a sound measure of network-wide "integrated information", which can be estimated from time-series data. But, a computational hurdle has stymied attempts to measure large-scale information integration in real brains. Specifically, the measurement of integrated information involves a combinatorial search for the informational "weakest link" of a network, a process whose computation time explodes super-exponentially with network size. Here, we show that spectral clustering, applied on the correlation matrix of time-series data, provides an approximate but robust solution to the search for the informational weakest link of large networks. This reduces the computation time for integrated information in large systems from longer than the lifespan of the universe to just minutes. We evaluate this solution in brain-like systems of coupled oscillators as well as in high-density electrocortigraphy data from two macaque monkeys, and show that the informational "weakest link" of the monkey cortex splits posterior sensory areas from anterior association areas. Finally, we use our solution to provide evidence in support of the long-standing hypothesis that information integration is maximized by networks with a high global efficiency, and that modular network structures promote the segregation of information.

摘要

神经科学中的一个突出问题是理解信息如何在大脑的许多模块中整合。虽然经典的信息论度量方法已经改变了我们对大脑感觉外围的前馈信息处理的理解,但对于大脑其余部分的大规模递归网络中的信息流,还缺乏类似的度量方法。为了解决这个问题,信息论的最新研究产生了一种对网络范围的“综合信息”的合理度量,可以从时间序列数据中估计出来。但是,一个计算上的障碍阻碍了在真正的大脑中测量大规模信息整合的尝试。具体来说,综合信息的测量涉及到对网络信息“最薄弱环节”的组合搜索,这个过程的计算时间随着网络规模呈超指数爆炸式增长。在这里,我们表明,时间序列数据的相关矩阵上的谱聚类提供了一个近似但稳健的解决方案,用于搜索大型网络的信息最薄弱环节。这将大型系统中综合信息的计算时间从超过宇宙的寿命缩短到只有几分钟。我们在类似大脑的耦合振荡器系统以及来自两只猕猴的高密度脑电数据中评估了这个解决方案,并表明猴子皮层的信息“最薄弱环节”将后感觉区域与前联合区域分开。最后,我们使用我们的解决方案提供了证据,支持信息整合最大化的网络具有高全局效率的长期假设,以及模块化网络结构促进信息的分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7155/6382174/ec55cf3a9745/pcbi.1006807.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验