Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
Plant Biotechnol J. 2019 Aug;17(8):1657-1669. doi: 10.1111/pbi.13091. Epub 2019 Mar 13.
Multi-functional microRNAs (miRNAs) are emerging as key modulators of plant-pathogen interactions. Although the involvement of some miRNAs in plant-insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (BPH) is the most notorious rice (Oryza sativa)-specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the miRNAs involved in rice-BPH interactions, we performed miRNA sequencing and identified BPH-responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (MIM396) in three genetic backgrounds indicated that OsmiR396 negatively regulated BPH resistance. Overexpression of one BPH-responsive target gene of OsmiR396, growth regulating factor 8 (OsGRF8), showed resistance to BPH. Furthermore, the flavonoid contents increased in both the OsmiR396-sequestered and the OsGRF8 overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced BPH resistance. Artificial applications of flavonoids to wild type (WT) plants also increased resistance to BPH. A BPH-responsive flavanone 3-hydroxylase (OsF3H) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by OsGRF8. A genetic functional analysis of OsF3H revealed its positive role in mediating both the flavonoid contents and BPH resistance. And analysis of the genetic correlation between OsmiR396 and OsF3H showed that down-regulation of OsF3H complemented the BPH resistance characteristic and simultaneously decreased the flavonoid contents of the MIM396 plants. Thus, we revealed a new BPH resistance mechanism mediated by the OsmiR396-OsGRF8-OsF3H-flavonoid pathway. Our study suggests potential applications of miRNAs in BPH resistance breeding.
多功能 microRNAs(miRNAs)正在成为植物-病原体相互作用的关键调节因子。尽管一些 miRNAs 在植物-昆虫相互作用中的参与已经被揭示,但潜在的机制仍然难以捉摸。褐飞虱(BPH)是最臭名昭著的水稻(Oryza sativa)特异性昆虫,每年都会造成严重的产量损失,需要紧急进行生物控制。为了揭示参与水稻-褐飞虱相互作用的 miRNAs,我们进行了 miRNA 测序,并鉴定了 BPH 响应的 OsmiR396。在三个遗传背景下过表达靶 mimicry(MIM396)来隔离 OsmiR396 表明,OsmiR396 负调控 BPH 抗性。过表达 OsmiR396 的一个 BPH 响应靶基因,生长调节因子 8(OsGRF8),表现出对 BPH 的抗性。此外,在 OsmiR396 被隔离和 OsGRF8 过表达的植物中,类黄酮含量增加。通过分析 39 个天然水稻品种,发现升高的类黄酮含量与增强的 BPH 抗性相关。人工向野生型(WT)植物施加类黄酮也增加了对 BPH 的抗性。在类黄酮生物合成途径中,一个 BPH 响应的黄烷酮 3-羟化酶(OsF3H)基因被证明直接受 OsGRF8 调控。OsF3H 的遗传功能分析表明,它在介导类黄酮含量和 BPH 抗性方面具有积极作用。对 OsmiR396 和 OsF3H 之间的遗传相关性进行分析表明,下调 OsF3H 补充了 BPH 抗性特征,同时降低了 MIM396 植物的类黄酮含量。因此,我们揭示了一个由 OsmiR396-OsGRF8-OsF3H-类黄酮途径介导的新的 BPH 抗性机制。我们的研究表明,miRNAs 在 BPH 抗性育种中有潜在的应用。