Suppr超能文献

干细胞静止:活力、约束与细胞空闲。

Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling.

机构信息

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.

出版信息

Cell Stem Cell. 2019 Feb 7;24(2):213-225. doi: 10.1016/j.stem.2019.01.001.

Abstract

Stem cells can reside in a state of reversible growth arrest, or quiescence, for prolonged periods of time. Although quiescence has long been viewed as a dormant, low-activity state, increasing evidence suggests that quiescence represents states of poised potential and active restraint, as stem cells "idle" in anticipation of activation, proliferation, and differentiation. Improved understanding of quiescent stem cell dynamics is leading to novel approaches to enhance maintenance and repair of aged or diseased tissues. In this Review, we discuss recent advances in our understanding of stem cell quiescence and techniques enabling more refined analyses of quiescence in vivo.

摘要

干细胞可以处于可逆的生长停滞状态,即静止期,持续很长时间。尽管静止期长期以来被视为休眠、低活性状态,但越来越多的证据表明,静止期代表着潜在的准备状态和活跃的抑制状态,因为干细胞“闲置”以等待激活、增殖和分化。对静止期干细胞动力学的更好理解正在导致新的方法来增强对衰老或患病组织的维持和修复。在这篇综述中,我们讨论了我们对干细胞静止期的理解的最新进展,以及使我们能够更精细地分析体内静止期的技术。

相似文献

1
Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling.
Cell Stem Cell. 2019 Feb 7;24(2):213-225. doi: 10.1016/j.stem.2019.01.001.
2
Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence.
Stem Cell Reports. 2019 Jun 11;12(6):1190-1200. doi: 10.1016/j.stemcr.2019.05.012.
3
Stem cell quiescence: the challenging path to activation.
Development. 2021 Feb 8;148(3):dev165084. doi: 10.1242/dev.165084.
4
Molecular regulation of stem cell quiescence.
Nat Rev Mol Cell Biol. 2013 Jun;14(6):329-40. doi: 10.1038/nrm3591.
5
Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches.
Methods Mol Biol. 2018;1686:1-25. doi: 10.1007/978-1-4939-7371-2_1.
6
Mimicking Muscle Stem Cell Quiescence in Culture: Methods for Synchronization in Reversible Arrest.
Methods Mol Biol. 2017;1556:283-302. doi: 10.1007/978-1-4939-6771-1_15.
7
Quiescence Entry, Maintenance, and Exit in Adult Stem Cells.
Int J Mol Sci. 2019 May 1;20(9):2158. doi: 10.3390/ijms20092158.
8
Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells.
FEBS J. 2021 May;288(10):3082-3093. doi: 10.1111/febs.15555. Epub 2020 Sep 15.
10
Dormancy and quiescence of skeletal muscle stem cells.
Results Probl Cell Differ. 2015;56:215-35. doi: 10.1007/978-3-662-44608-9_10.

引用本文的文献

1
Quiescence Multiverse.
Biomolecules. 2025 Jul 4;15(7):960. doi: 10.3390/biom15070960.
3
Reversible proliferative arrest induced by rapid depletion of RNase MRP.
Nat Commun. 2025 Jun 18;16(1):5342. doi: 10.1038/s41467-025-60471-4.
5
Heat Preconditioning of Nanofat Does Not Improve Its Vascularization Properties.
Cells. 2025 Apr 11;14(8):581. doi: 10.3390/cells14080581.
6
Physical training reduces cell senescence and associated insulin resistance in skeletal muscle.
Mol Metab. 2025 May;95:102130. doi: 10.1016/j.molmet.2025.102130. Epub 2025 Mar 22.
7
Metabolic Objectives and Trade-Offs: Inference and Applications.
Metabolites. 2025 Feb 6;15(2):101. doi: 10.3390/metabo15020101.
8
Role of the NuRD complex and altered proteostasis in cancer cell quiescence.
bioRxiv. 2025 Feb 14:2025.02.10.637435. doi: 10.1101/2025.02.10.637435.
9
Identification of the MRTFA/SRF pathway as a critical regulator of quiescence in cancer.
bioRxiv. 2024 Nov 17:2024.11.15.623825. doi: 10.1101/2024.11.15.623825.
10
A latent Axin2/Scx progenitor pool is the central organizer of tendon healing.
NPJ Regen Med. 2024 Oct 17;9(1):30. doi: 10.1038/s41536-024-00370-2.

本文引用的文献

3
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells.
Nature. 2018 Feb 1;554(7690):106-111. doi: 10.1038/nature25455. Epub 2018 Jan 3.
4
Revealing age-related changes of adult hippocampal neurogenesis using mathematical models.
Development. 2018 Jan 8;145(1):dev153544. doi: 10.1242/dev.153544.
5
Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo.
Cell Rep. 2017 Nov 14;21(7):1994-2004. doi: 10.1016/j.celrep.2017.10.037.
6
In Situ Fixation Redefines Quiescence and Early Activation of Skeletal Muscle Stem Cells.
Cell Rep. 2017 Nov 14;21(7):1982-1993. doi: 10.1016/j.celrep.2017.10.080.
7
Cell-type-specific metabolic labeling of nascent proteomes in vivo.
Nat Biotechnol. 2017 Dec;35(12):1196-1201. doi: 10.1038/nbt.4016. Epub 2017 Nov 6.
8
Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E8996-E9005. doi: 10.1073/pnas.1708725114. Epub 2017 Oct 9.
9
Controlling Depth of Cellular Quiescence by an Rb-E2F Network Switch.
Cell Rep. 2017 Sep 26;20(13):3223-3235. doi: 10.1016/j.celrep.2017.09.007.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验