Peimyoo N, Barnes M D, Mehew J D, De Sanctis A, Amit I, Escolar J, Anastasiou K, Rooney A P, Haigh S J, Russo S, Craciun M F, Withers F
Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Sci Adv. 2019 Jan 18;5(1):eaau0906. doi: 10.1126/sciadv.aau0906. eCollection 2019 Jan.
Similar to silicon-based semiconductor devices, van der Waals heterostructures require integration with high- oxides. Here, we demonstrate a method to embed and pattern a multifunctional few-nanometer-thick high- oxide within various van der Waals devices without degrading the properties of the neighboring two-dimensional materials. This transformation allows for the creation of several fundamental nanoelectronic and optoelectronic devices, including flexible Schottky barrier field-effect transistors, dual-gated graphene transistors, and vertical light-emitting/detecting tunneling transistors. Furthermore, upon dielectric breakdown, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching memories. This nondestructive embedding of a high- oxide within complex van der Waals heterostructures could play an important role in future flexible multifunctional van der Waals devices.
与硅基半导体器件类似,范德华异质结构需要与高介电常数氧化物集成。在此,我们展示了一种在各种范德华器件中嵌入并图案化多功能几纳米厚高介电常数氧化物的方法,同时不会降低相邻二维材料的性能。这种转变使得能够制造几种基本的纳米电子和光电器件,包括柔性肖特基势垒场效应晶体管、双栅极石墨烯晶体管和垂直发光/探测隧道晶体管。此外,在介电击穿时会形成导电细丝。这个细丝形成过程可用于与封装的导电材料进行电接触。对细丝形成过程的精确控制还能实现可逆开关存储器。在复杂的范德华异质结构中对高介电常数氧化物进行这种无损嵌入,可能在未来的柔性多功能范德华器件中发挥重要作用。