Suppr超能文献

用于低功耗二维电子学的高κ单晶硅介电材料。

High-κ monocrystalline dielectrics for low-power two-dimensional electronics.

作者信息

Yin Lei, Cheng Ruiqing, Wan Xuhao, Ding Jiahui, Jia Jun, Wen Yao, Liu Xiaoze, Guo Yuzheng, He Jun

机构信息

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China.

School of Electrical Engineering and Automation, Wuhan University, Wuhan, China.

出版信息

Nat Mater. 2025 Feb;24(2):197-204. doi: 10.1038/s41563-024-02043-3. Epub 2024 Nov 6.

Abstract

The downscaling of complementary metal-oxide-semiconductor technology has produced breakthroughs in electronics, but more extreme scaling has hit a wall of device performance degradation. One key challenge is the development of insulators with high dielectric constant, wide bandgap and high tunnel masses. Here, we show that two-dimensional monocrystalline gadolinium pentoxide, which is devised through combining particle swarm optimization algorithm and theoretical calculations and synthesized via van der Waals epitaxy, could exhibit a high dielectric constant of ~25.5 and a wide bandgap simultaneously. A desirable equivalent oxide thickness down to 1 nm with an ultralow leakage current of ~10 A cm even at 5 MV cm is achieved. The molybdenum disulfide transistors gated by gadolinium pentoxide exhibit high on/off ratios over 10 and near-Boltzmann-limit subthreshold swing at an operation voltage of 0.5 V. We also constructed inverter circuits with high gain and nanowatt power consumption. This reliable approach to integrating ultrathin monocrystalline insulators paves the way to future nanoelectronics.

摘要

互补金属氧化物半导体技术的尺寸缩减在电子领域取得了突破,但更极端的尺寸缩减却遭遇了器件性能退化的瓶颈。一个关键挑战是开发具有高介电常数、宽带隙和高隧穿质量的绝缘体。在此,我们表明,通过结合粒子群优化算法和理论计算设计并通过范德华外延合成的二维单晶五氧化钆,能够同时展现出约25.5的高介电常数和宽带隙。实现了理想的等效氧化层厚度低至1纳米,即使在5兆伏/厘米时漏电流也超低,约为10安/平方厘米。由五氧化钆栅控的二硫化钼晶体管在0.5伏的工作电压下展现出超过10的高开关比和接近玻尔兹曼极限的亚阈值摆幅。我们还构建了具有高增益和纳瓦功耗的反相器电路。这种集成超薄单晶绝缘体的可靠方法为未来的纳米电子学铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验