School of Animal and Comparative Biomedical Science, University of Arizona , Tucson, Arizona.
Am J Physiol Gastrointest Liver Physiol. 2019 May 1;316(5):G623-G631. doi: 10.1152/ajpgi.00415.2017. Epub 2019 Feb 15.
Ketosis is a metabolic adaptation to fasting, nonalcoholic fatty liver disease (NAFLD), and prolonged exercise. β-OH butyrate acts as a transcriptional regulator and at G protein-coupled receptors to modulate cellular signaling pathways in a hormone-like manner. While physiological ketosis is often adaptive, chronic hyperketonemia may contribute to the metabolic dysfunction of NAFLD. To understand how β-OH butyrate signaling affects hepatic metabolism, we compared the hepatic fasting response in control and 3-hydroxy-3-methylglutaryl-CoA synthase II (HMGCS2) knockdown mice that are unable to elevate β-OH butyrate production. To establish that rescue of ketone metabolic/endocrine signaling would restore the normal hepatic fasting response, we gave intraperitoneal injections of β-OH butyrate (5.7 mmol/kg) to HMGCS2 knockdown and control mice every 2 h for the final 9 h of a 16-h fast. In hypoketonemic, HMGCS2 knockdown mice, fasting more robustly increased mRNA expression of uncoupling protein 2 (UCP2), a protein critical for supporting fatty acid oxidation and ketogenesis. In turn, exogenous β-OH butyrate administration to HMGCS2 knockdown mice decreased fasting UCP2 mRNA expression to that observed in control mice. Also supporting feedback at the transcriptional level, β-OH butyrate lowered the fasting-induced expression of HMGCS2 mRNA in control mice. β-OH butyrate also regulates the glycemic response to fasting. The fast-induced fall in serum glucose was absent in HMGCS2 knockdown mice but was restored by β-OH butyrate administration. These data propose that endogenous β-OH butyrate signaling transcriptionally regulates hepatic fatty acid oxidation and ketogenesis, while modulating glucose tolerance. Ketogenesis regulates whole body glucose metabolism and β-OH butyrate produced by the liver feeds back to inhibit hepatic β-oxidation and ketogenesis during fasting.
酮症是一种对禁食、非酒精性脂肪肝疾病(NAFLD)和长时间运动的代谢适应。β-羟基丁酸作为一种转录调节剂和 G 蛋白偶联受体,以类似激素的方式调节细胞信号通路。虽然生理性酮症通常是适应性的,但慢性高酮血症可能导致 NAFLD 的代谢功能障碍。为了了解 β-羟基丁酸信号如何影响肝代谢,我们比较了无法升高 β-羟基丁酸产生的对照和 3-羟-3-甲基戊二酰辅酶 A 合酶 II(HMGCS2)敲低小鼠的肝禁食反应。为了确定酮代谢/内分泌信号的恢复将恢复正常的肝禁食反应,我们每隔 2 小时给 HMGCS2 敲低和对照小鼠腹腔内注射 5.7mmol/kg 的 β-羟基丁酸,持续 16 小时禁食的最后 9 小时。在低酮血症的 HMGCS2 敲低小鼠中,禁食更强烈地增加了解偶联蛋白 2(UCP2)的 mRNA 表达,UCP2 是支持脂肪酸氧化和酮生成的关键蛋白。反过来,外源性 β-羟基丁酸给药可降低 HMGCS2 敲低小鼠的禁食 UCP2 mRNA 表达,使其与对照小鼠相似。同样支持转录水平的反馈,β-羟基丁酸降低了对照小鼠禁食诱导的 HMGCS2 mRNA 表达。β-羟基丁酸还调节对禁食的血糖反应。在 HMGCS2 敲低小鼠中,快速诱导的血清葡萄糖下降缺失,但通过 β-羟基丁酸给药得到恢复。这些数据表明,内源性 β-羟基丁酸信号转录调节肝脂肪酸氧化和酮生成,同时调节葡萄糖耐量。酮生成调节全身葡萄糖代谢,肝脏产生的 β-羟基丁酸反馈抑制禁食期间的肝 β-氧化和酮生成。