Kho Aaron, Srinivasan Vivek J
Opt Lett. 2019 Feb 15;44(4):775-778. doi: 10.1364/OL.44.000775.
Visible light optical coherence tomography (OCT) has recently emerged in retinal imaging, with claims of micrometer-scale axial resolution and multi-color (sub-band) imaging. Here, we show that the large dispersion of optical glass and aqueous media, together with broad optical bandwidths often used in visible light OCT, compromises both of these claims. To rectify this, we introduce the notion of spatially dependent (i.e., depth and transverse position-dependent) dispersion. We use a novel sub-band, sub-image correlation algorithm to estimate spatially dependent dispersion in our 109 nm bandwidth visible light OCT mouse retinal imaging system centered at 587 nm. After carefully compensating spatially dependent dispersion, we achieve delineation of fine outer retinal bands in mouse strains of varying pigmentation. Spatially dependent dispersion correction is critical for broader bandwidths and shorter visible wavelengths.
可见光光学相干断层扫描(OCT)最近在视网膜成像领域崭露头角,号称具有微米级轴向分辨率和多色(子带)成像能力。在此,我们表明,光学玻璃和水性介质的大色散,以及可见光OCT中常用的宽光学带宽,损害了这两个特性。为了纠正这一点,我们引入了空间相关(即深度和横向位置相关)色散的概念。我们使用一种新颖的子带、子图像相关算法,来估计我们以587nm为中心的109nm带宽可见光OCT小鼠视网膜成像系统中的空间相关色散。在仔细补偿空间相关色散后,我们实现了对不同色素沉着小鼠品系中精细的视网膜外带的描绘。空间相关色散校正对于更宽的带宽和更短的可见光波长至关重要。